monorepo/tree/src/lib.rs

236 lines
7.2 KiB
Rust
Raw Normal View History

//! This data structure is a generic tree which can contain any data. That data itself need to keep
//! track of its own tree structure.
//!
//! This surely already exists. I am created it to test my own ability to do things in Rust.
2023-10-21 00:17:33 +00:00
use std::{
cell::{Ref, RefCell},
collections::VecDeque,
rc::Rc,
};
// I need to take what I learned about linked lists and about the other Tree data structure, and
// apply it here with arena allocation.
//
// Also, smarter node allocation and pointer handling in order to avoid clones.
#[derive(Clone, Debug, Default)]
2023-10-21 00:17:33 +00:00
pub enum Tree<T> {
#[default]
Empty,
2023-10-20 23:49:31 +00:00
Root(Node<T>),
}
2023-10-21 00:17:33 +00:00
impl<T> Tree<T> {
2023-10-21 03:43:47 +00:00
pub fn new(value: T) -> (Tree<T>, Node<T>) {
let node = Node::new(value);
let tree = Tree::Root(node.clone());
(tree, node)
}
pub fn set_value(&mut self, value: T) -> Node<T> {
let node = Node::new(value);
*self = Tree::Root(node.clone());
node
}
2023-10-20 23:49:31 +00:00
/// Use a breadth-first-search pattern to find a node, returning the node if found.
2023-10-21 00:28:36 +00:00
pub fn find_bfs<F>(&self, op: F) -> Option<Node<T>>
where
F: FnOnce(&T) -> bool + Copy,
{
2023-10-20 23:49:31 +00:00
let mut queue: VecDeque<Node<T>> = match self {
Tree::Empty => VecDeque::new(),
Tree::Root(node) => {
let mut queue = VecDeque::new();
queue.push_back(node.clone());
queue
}
};
while let Some(node) = queue.pop_front() {
2023-10-20 23:49:31 +00:00
if op(&node.value()) {
return Some(node.clone());
}
2023-10-21 00:17:33 +00:00
for child in node.children().iter() {
2023-10-20 23:49:31 +00:00
queue.push_back(child.clone())
}
}
None
}
2023-10-21 03:43:47 +00:00
// Do a depth-first-search in order to get the path to a node. Start with a naive recursive
// implementation, then switch to a stack-based implementation in order to avoid exceeding the
// stack.
pub fn path_to<F>(&self, f: F) -> Vec<Node<T>>
where
F: FnOnce(&T) -> bool + Copy,
{
unimplemented!()
}
/// Convert each node of a tree from type T to type U
2023-10-21 03:43:47 +00:00
pub fn map<F, U>(&self, op: F) -> Tree<U>
where
F: FnOnce(&T) -> U + Copy,
2023-10-21 03:43:47 +00:00
{
// A key part of this is to avoid recursion. There is no telling how deep a tree may go (Go
// game records can go hundreds of nodes deep), so we're going to just avoid recursion.
2023-10-21 03:43:47 +00:00
match self {
Tree::Empty => Tree::Empty,
Tree::Root(root) => {
let new_root = Node::new(op(&root.value()));
// This queue serves as a work list. Each node in the queue needs to be converted,
// and I've paired the node up with the one that it's supposed to be attached to.
// So, as we look at a node A, we make sure that all of its children gets added to
// the queue, and that the queue knows that the conversion of each child node
// should get attached to A.
2023-10-21 03:43:47 +00:00
let mut queue: VecDeque<(Node<T>, Node<U>)> = root
.children()
.iter()
.map(|child| (child.clone(), new_root.clone()))
.collect();
while let Some((source, dest)) = queue.pop_front() {
let res = Node::new(op(&source.value()));
2023-10-21 03:43:47 +00:00
dest.add_child_node(res.clone());
for child in source.children().iter() {
queue.push_back((child.clone(), res.clone()));
}
}
Tree::Root(new_root)
}
}
}
}
2023-10-20 23:49:31 +00:00
// By using the Rc<RefCell> container here, I'm able to make Node easily clonable while still
// having the contents be shared. This means that I can change the tree structure without having to
// make the visible objects mutable.
//
// This feels like cheating the type system.
2023-10-21 00:17:33 +00:00
//
// However, since I've moved the RefCell inside of the node, I can borrow the node multiple times
// in a traversal function and I can make changes to nodes that I find.
#[derive(Debug)]
pub struct Node<T>(Rc<RefCell<Node_<T>>>);
impl<T> Clone for Node<T> {
fn clone(&self) -> Self {
Node(Rc::clone(&self.0))
}
}
2023-10-20 23:49:31 +00:00
#[derive(Debug)]
2023-10-21 00:17:33 +00:00
struct Node_<T> {
value: T,
2023-10-20 23:49:31 +00:00
children: Vec<Node<T>>,
}
2023-10-21 00:17:33 +00:00
impl<T> Node<T> {
pub fn new(value: T) -> Self {
2023-10-20 23:49:31 +00:00
Self(Rc::new(RefCell::new(Node_ {
value,
children: vec![],
2023-10-20 23:49:31 +00:00
})))
}
2023-10-21 00:28:36 +00:00
/// Immutably retrieve the data in this node.
pub fn value(&self) -> Ref<T> {
2023-10-21 00:28:36 +00:00
// Ref::map is not actually a member function. I don't know why this was done, other than
// maybe to avoid conflicting with other `map` declarations. Why that is necessary when
// Option::map exists as a member, I don't know.
2023-10-21 00:17:33 +00:00
Ref::map(self.0.borrow(), |v| &v.value)
}
pub fn children(&self) -> Ref<Vec<Node<T>>> {
2023-10-21 00:17:33 +00:00
Ref::map(self.0.borrow(), |v| &v.children)
}
2023-10-20 23:49:31 +00:00
pub fn add_child_node(&self, child: Node<T>) {
self.0.borrow_mut().children.push(child)
}
2023-10-21 03:43:47 +00:00
pub fn add_child_value(&self, value: T) -> Node<T> {
let node = Node::new(value);
self.0.borrow_mut().children.push(node.clone());
node
}
}
impl<T: PartialEq> PartialEq for Node<T> {
fn eq(&self, other: &Node<T>) -> bool {
self.0.borrow().value == other.0.borrow().value
&& self.0.borrow().children == other.0.borrow().children
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn can_find_node_in_tree() {
let mut tree = Tree::default();
tree.set_value(15);
assert!(tree.find_bfs(|val| *val == 15).is_some());
assert!(tree.find_bfs(|val| *val == 16).is_none());
2023-10-20 23:49:31 +00:00
let node = tree.find_bfs(|val| *val == 15).unwrap();
node.add_child_value(20);
assert!(tree.find_bfs(|val| *val == 20).is_some());
}
#[test]
fn node_can_add_children() {
2023-10-20 23:49:31 +00:00
let n = Node::new(15);
n.add_child_value(20);
2023-10-21 00:17:33 +00:00
assert_eq!(*n.value(), 15);
2023-10-20 23:49:31 +00:00
// assert_eq!(n.children(), vec![Rc::new(RefCell::new(Node::new(20)))]);
}
2023-10-21 03:43:47 +00:00
#[test]
fn it_can_map_one_tree_to_another() {
let (tree, n) = Tree::new(15);
let n = n.add_child_value(16);
let _ = n.add_child_value(17);
let tree2 = tree.map(|v| v.to_string());
2023-10-21 03:43:47 +00:00
assert!(tree2.find_bfs(|val| *val == "15").is_some());
assert!(tree2.find_bfs(|val| *val == "16").is_some());
assert!(tree2.find_bfs(|val| *val == "17").is_some());
}
#[test]
fn path_to_on_empty_tree_returns_empty() {
let tree: Tree<&str> = Tree::default();
assert_eq!(tree.path_to(|val| *val == "i"), vec![]);
}
// A
// B G H
// C I
// D E F
#[test]
fn it_can_find_a_path_to_a_node() {
let (tree, a) = Tree::new("A");
let b = a.add_child_value("B");
let c = b.add_child_value("C");
let _d = c.add_child_value("D");
let _e = c.add_child_value("D");
let _f = c.add_child_value("D");
let _g = a.add_child_value("G");
let h = a.add_child_value("H");
let i = a.add_child_value("I");
assert_eq!(tree.path_to(|val| *val == "z"), vec![]);
assert_eq!(tree.path_to(|val| *val == "i"), vec![a, h, i]);
}
}