2023-10-20 22:32:43 +00:00
|
|
|
//! This data structure is a generic tree which can contain any data. That data itself need to keep
|
|
|
|
//! track of its own tree structure.
|
|
|
|
//!
|
|
|
|
//! This surely already exists. I am created it to test my own ability to do things in Rust.
|
|
|
|
|
2023-10-21 00:17:33 +00:00
|
|
|
use std::{
|
|
|
|
cell::{Ref, RefCell},
|
|
|
|
collections::VecDeque,
|
|
|
|
rc::Rc,
|
|
|
|
};
|
2023-10-20 22:32:43 +00:00
|
|
|
|
2024-04-10 02:55:33 +00:00
|
|
|
// I need to take what I learned about linked lists and about the other Tree data structure, and
|
|
|
|
// apply it here with arena allocation.
|
|
|
|
//
|
|
|
|
// Also, smarter node allocation and pointer handling in order to avoid clones.
|
2023-10-25 14:35:24 +00:00
|
|
|
#[derive(Clone, Debug, Default)]
|
2023-10-21 00:17:33 +00:00
|
|
|
pub enum Tree<T> {
|
2023-10-25 14:35:24 +00:00
|
|
|
#[default]
|
2023-10-20 22:32:43 +00:00
|
|
|
Empty,
|
2023-10-20 23:49:31 +00:00
|
|
|
Root(Node<T>),
|
2023-10-20 22:32:43 +00:00
|
|
|
}
|
|
|
|
|
2023-10-21 00:17:33 +00:00
|
|
|
impl<T> Tree<T> {
|
2023-10-21 03:43:47 +00:00
|
|
|
pub fn new(value: T) -> (Tree<T>, Node<T>) {
|
|
|
|
let node = Node::new(value);
|
|
|
|
let tree = Tree::Root(node.clone());
|
|
|
|
(tree, node)
|
|
|
|
}
|
|
|
|
|
|
|
|
pub fn set_value(&mut self, value: T) -> Node<T> {
|
|
|
|
let node = Node::new(value);
|
|
|
|
*self = Tree::Root(node.clone());
|
|
|
|
node
|
2023-10-20 22:32:43 +00:00
|
|
|
}
|
|
|
|
|
2023-10-20 23:49:31 +00:00
|
|
|
/// Use a breadth-first-search pattern to find a node, returning the node if found.
|
2023-10-21 00:28:36 +00:00
|
|
|
pub fn find_bfs<F>(&self, op: F) -> Option<Node<T>>
|
2023-10-20 22:32:43 +00:00
|
|
|
where
|
|
|
|
F: FnOnce(&T) -> bool + Copy,
|
|
|
|
{
|
2023-10-20 23:49:31 +00:00
|
|
|
let mut queue: VecDeque<Node<T>> = match self {
|
2023-10-20 22:32:43 +00:00
|
|
|
Tree::Empty => VecDeque::new(),
|
|
|
|
Tree::Root(node) => {
|
|
|
|
let mut queue = VecDeque::new();
|
|
|
|
queue.push_back(node.clone());
|
|
|
|
queue
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
while let Some(node) = queue.pop_front() {
|
2023-10-20 23:49:31 +00:00
|
|
|
if op(&node.value()) {
|
2023-10-20 22:32:43 +00:00
|
|
|
return Some(node.clone());
|
|
|
|
}
|
|
|
|
|
2023-10-21 00:17:33 +00:00
|
|
|
for child in node.children().iter() {
|
2023-10-20 23:49:31 +00:00
|
|
|
queue.push_back(child.clone())
|
2023-10-20 22:32:43 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
None
|
|
|
|
}
|
2023-10-21 03:43:47 +00:00
|
|
|
|
2024-04-10 02:55:33 +00:00
|
|
|
// Do a depth-first-search in order to get the path to a node. Start with a naive recursive
|
|
|
|
// implementation, then switch to a stack-based implementation in order to avoid exceeding the
|
|
|
|
// stack.
|
|
|
|
pub fn path_to<F>(&self, f: F) -> Vec<Node<T>>
|
|
|
|
where
|
|
|
|
F: FnOnce(&T) -> bool + Copy,
|
|
|
|
{
|
|
|
|
unimplemented!()
|
|
|
|
}
|
|
|
|
|
2023-10-25 03:05:02 +00:00
|
|
|
/// Convert each node of a tree from type T to type U
|
2023-10-21 03:43:47 +00:00
|
|
|
pub fn map<F, U>(&self, op: F) -> Tree<U>
|
|
|
|
where
|
2023-10-25 03:05:02 +00:00
|
|
|
F: FnOnce(&T) -> U + Copy,
|
2023-10-21 03:43:47 +00:00
|
|
|
{
|
2023-10-25 03:05:02 +00:00
|
|
|
// A key part of this is to avoid recursion. There is no telling how deep a tree may go (Go
|
|
|
|
// game records can go hundreds of nodes deep), so we're going to just avoid recursion.
|
2023-10-21 03:43:47 +00:00
|
|
|
match self {
|
|
|
|
Tree::Empty => Tree::Empty,
|
|
|
|
Tree::Root(root) => {
|
2023-10-25 03:05:02 +00:00
|
|
|
let new_root = Node::new(op(&root.value()));
|
|
|
|
|
|
|
|
// This queue serves as a work list. Each node in the queue needs to be converted,
|
|
|
|
// and I've paired the node up with the one that it's supposed to be attached to.
|
|
|
|
// So, as we look at a node A, we make sure that all of its children gets added to
|
|
|
|
// the queue, and that the queue knows that the conversion of each child node
|
|
|
|
// should get attached to A.
|
2023-10-21 03:43:47 +00:00
|
|
|
let mut queue: VecDeque<(Node<T>, Node<U>)> = root
|
|
|
|
.children()
|
|
|
|
.iter()
|
|
|
|
.map(|child| (child.clone(), new_root.clone()))
|
|
|
|
.collect();
|
|
|
|
|
|
|
|
while let Some((source, dest)) = queue.pop_front() {
|
2023-10-25 03:05:02 +00:00
|
|
|
let res = Node::new(op(&source.value()));
|
2023-10-21 03:43:47 +00:00
|
|
|
dest.add_child_node(res.clone());
|
|
|
|
|
|
|
|
for child in source.children().iter() {
|
|
|
|
queue.push_back((child.clone(), res.clone()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Tree::Root(new_root)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2023-10-20 22:32:43 +00:00
|
|
|
}
|
|
|
|
|
2023-10-20 23:49:31 +00:00
|
|
|
// By using the Rc<RefCell> container here, I'm able to make Node easily clonable while still
|
|
|
|
// having the contents be shared. This means that I can change the tree structure without having to
|
|
|
|
// make the visible objects mutable.
|
|
|
|
//
|
|
|
|
// This feels like cheating the type system.
|
2023-10-21 00:17:33 +00:00
|
|
|
//
|
|
|
|
// However, since I've moved the RefCell inside of the node, I can borrow the node multiple times
|
|
|
|
// in a traversal function and I can make changes to nodes that I find.
|
|
|
|
#[derive(Debug)]
|
|
|
|
pub struct Node<T>(Rc<RefCell<Node_<T>>>);
|
|
|
|
|
|
|
|
impl<T> Clone for Node<T> {
|
|
|
|
fn clone(&self) -> Self {
|
|
|
|
Node(Rc::clone(&self.0))
|
|
|
|
}
|
|
|
|
}
|
2023-10-20 23:49:31 +00:00
|
|
|
|
|
|
|
#[derive(Debug)]
|
2023-10-21 00:17:33 +00:00
|
|
|
struct Node_<T> {
|
2023-10-20 22:32:43 +00:00
|
|
|
value: T,
|
2023-10-20 23:49:31 +00:00
|
|
|
children: Vec<Node<T>>,
|
2023-10-20 22:32:43 +00:00
|
|
|
}
|
|
|
|
|
2023-10-21 00:17:33 +00:00
|
|
|
impl<T> Node<T> {
|
2023-10-20 22:32:43 +00:00
|
|
|
pub fn new(value: T) -> Self {
|
2023-10-20 23:49:31 +00:00
|
|
|
Self(Rc::new(RefCell::new(Node_ {
|
2023-10-20 22:32:43 +00:00
|
|
|
value,
|
|
|
|
children: vec![],
|
2023-10-20 23:49:31 +00:00
|
|
|
})))
|
2023-10-20 22:32:43 +00:00
|
|
|
}
|
|
|
|
|
2023-10-21 00:28:36 +00:00
|
|
|
/// Immutably retrieve the data in this node.
|
2023-10-25 14:35:24 +00:00
|
|
|
pub fn value(&self) -> Ref<T> {
|
2023-10-21 00:28:36 +00:00
|
|
|
// Ref::map is not actually a member function. I don't know why this was done, other than
|
|
|
|
// maybe to avoid conflicting with other `map` declarations. Why that is necessary when
|
|
|
|
// Option::map exists as a member, I don't know.
|
2023-10-21 00:17:33 +00:00
|
|
|
Ref::map(self.0.borrow(), |v| &v.value)
|
2023-10-20 22:32:43 +00:00
|
|
|
}
|
|
|
|
|
2023-10-25 14:35:24 +00:00
|
|
|
pub fn children(&self) -> Ref<Vec<Node<T>>> {
|
2023-10-21 00:17:33 +00:00
|
|
|
Ref::map(self.0.borrow(), |v| &v.children)
|
2023-10-20 22:32:43 +00:00
|
|
|
}
|
|
|
|
|
2023-10-20 23:49:31 +00:00
|
|
|
pub fn add_child_node(&self, child: Node<T>) {
|
|
|
|
self.0.borrow_mut().children.push(child)
|
2023-10-20 22:32:43 +00:00
|
|
|
}
|
|
|
|
|
2023-10-21 03:43:47 +00:00
|
|
|
pub fn add_child_value(&self, value: T) -> Node<T> {
|
|
|
|
let node = Node::new(value);
|
|
|
|
self.0.borrow_mut().children.push(node.clone());
|
|
|
|
node
|
2023-10-20 22:32:43 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2024-04-10 02:55:33 +00:00
|
|
|
impl<T: PartialEq> PartialEq for Node<T> {
|
|
|
|
fn eq(&self, other: &Node<T>) -> bool {
|
|
|
|
self.0.borrow().value == other.0.borrow().value
|
|
|
|
&& self.0.borrow().children == other.0.borrow().children
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-10-20 22:32:43 +00:00
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
|
|
|
use super::*;
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn can_find_node_in_tree() {
|
|
|
|
let mut tree = Tree::default();
|
|
|
|
tree.set_value(15);
|
|
|
|
assert!(tree.find_bfs(|val| *val == 15).is_some());
|
|
|
|
assert!(tree.find_bfs(|val| *val == 16).is_none());
|
|
|
|
|
2023-10-20 23:49:31 +00:00
|
|
|
let node = tree.find_bfs(|val| *val == 15).unwrap();
|
|
|
|
node.add_child_value(20);
|
2023-10-20 22:32:43 +00:00
|
|
|
|
|
|
|
assert!(tree.find_bfs(|val| *val == 20).is_some());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn node_can_add_children() {
|
2023-10-20 23:49:31 +00:00
|
|
|
let n = Node::new(15);
|
2023-10-20 22:32:43 +00:00
|
|
|
n.add_child_value(20);
|
|
|
|
|
2023-10-21 00:17:33 +00:00
|
|
|
assert_eq!(*n.value(), 15);
|
2023-10-20 23:49:31 +00:00
|
|
|
// assert_eq!(n.children(), vec![Rc::new(RefCell::new(Node::new(20)))]);
|
2023-10-20 22:32:43 +00:00
|
|
|
}
|
2023-10-21 03:43:47 +00:00
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn it_can_map_one_tree_to_another() {
|
|
|
|
let (tree, n) = Tree::new(15);
|
|
|
|
let n = n.add_child_value(16);
|
|
|
|
let _ = n.add_child_value(17);
|
|
|
|
|
2023-10-25 03:05:02 +00:00
|
|
|
let tree2 = tree.map(|v| v.to_string());
|
2023-10-21 03:43:47 +00:00
|
|
|
|
|
|
|
assert!(tree2.find_bfs(|val| *val == "15").is_some());
|
|
|
|
assert!(tree2.find_bfs(|val| *val == "16").is_some());
|
|
|
|
assert!(tree2.find_bfs(|val| *val == "17").is_some());
|
|
|
|
}
|
2024-04-10 02:55:33 +00:00
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn path_to_on_empty_tree_returns_empty() {
|
|
|
|
let tree: Tree<&str> = Tree::default();
|
|
|
|
|
|
|
|
assert_eq!(tree.path_to(|val| *val == "i"), vec![]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// A
|
|
|
|
// B G H
|
|
|
|
// C I
|
|
|
|
// D E F
|
|
|
|
#[test]
|
|
|
|
fn it_can_find_a_path_to_a_node() {
|
|
|
|
let (tree, a) = Tree::new("A");
|
|
|
|
let b = a.add_child_value("B");
|
|
|
|
let c = b.add_child_value("C");
|
|
|
|
let _d = c.add_child_value("D");
|
|
|
|
let _e = c.add_child_value("D");
|
|
|
|
let _f = c.add_child_value("D");
|
|
|
|
let _g = a.add_child_value("G");
|
|
|
|
let h = a.add_child_value("H");
|
|
|
|
let i = a.add_child_value("I");
|
|
|
|
|
|
|
|
assert_eq!(tree.path_to(|val| *val == "z"), vec![]);
|
|
|
|
assert_eq!(tree.path_to(|val| *val == "i"), vec![a, h, i]);
|
|
|
|
}
|
2023-10-20 22:32:43 +00:00
|
|
|
}
|