Calculate out the depth and width of each node

This commit is contained in:
Savanni D'Gerinel 2024-04-29 22:24:01 -04:00
parent 1ddc867f01
commit 3b0d491c82
2 changed files with 179 additions and 39 deletions

View File

@ -14,18 +14,18 @@ General Public License for more details.
You should have received a copy of the GNU General Public License along with On the Grid. If not, see <https://www.gnu.org/licenses/>.
*/
use crate::{Core};
use crate::Core;
use serde::{Deserialize, Serialize};
use sgf::GameRecord;
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum LibraryRequest {
ListGames
ListGames,
}
#[derive(Clone, Debug)]
pub enum LibraryResponse {
Games(Vec<GameRecord>)
Games(Vec<GameRecord>),
}
async fn handle_list_games(model: &Core) -> LibraryResponse {
@ -39,10 +39,8 @@ async fn handle_list_games(model: &Core) -> LibraryResponse {
}
}
pub async fn handle(model: &Core, request: LibraryRequest) -> LibraryResponse {
match request {
LibraryRequest::ListGames => handle_list_games(model).await,
}
}

View File

@ -3,7 +3,9 @@ use config::define_config;
use config_derive::ConfigOption;
use serde::{Deserialize, Serialize};
use sgf::GameTree;
use std::{cell::RefCell, collections::VecDeque, fmt, path::PathBuf, time::Duration};
use std::{
cell::RefCell, collections::{HashMap, VecDeque}, fmt, ops::Deref, path::PathBuf, time::Duration
};
use thiserror::Error;
define_config! {
@ -242,19 +244,39 @@ pub struct Tree<T> {
struct DepthTree(slab_tree::Tree<SizeNode>);
impl Deref for DepthTree {
type Target = slab_tree::Tree<SizeNode>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
#[derive(Debug)]
pub struct SizeNode {
pub id: usize,
node_id: slab_tree::NodeId,
parent: Option<usize>,
parent: Option<slab_tree::NodeId>,
depth: usize,
width: RefCell<Option<usize>>,
children: Vec<usize>,
width: usize,
}
impl SizeNode {
pub fn position(&self) -> (usize, usize) {
(self.depth, self.width)
}
}
impl DepthTree {
/*
fn new(root: T) -> Self {
// My previous work to convert from a node tree to this tree-with-width dependend on the node tree
// being a recursive data structure. Now I need to find a way to convert a slab tree to this width
// tree.
//
// It all feels like a lot of custom weirdness. I shouldn't need a bunch of custom data structures,
// so I want to eliminate the "Tree" above and keep using the slab tree. I think I should be able
// to build these Node objects without needing a custom data structure.
fn new() -> Self {
Self(slab_tree::Tree::new())
/*
Tree {
nodes: vec![Node {
id: 0,
@ -265,8 +287,10 @@ impl DepthTree {
children: vec![],
}],
}
*/
}
/*
pub fn node(&self, idx: usize) -> &T {
&self.nodes[idx].node
}
@ -293,13 +317,18 @@ impl DepthTree {
*/
pub fn max_depth(&self) -> usize {
unimplemented!()
/*
self.nodes.iter().fold(
0,
|max, node| if node.depth > max { node.depth } else { max },
)
*/
self.0
.root()
.unwrap()
.traverse_pre_order()
.fold(0, |max, node| {
println!("node depth: {}", node.data().depth);
if node.data().depth > max {
node.data().depth
} else {
max
}
})
}
// Since I know the width of a node, now I want to figure out its placement in the larger
@ -317,8 +346,8 @@ impl DepthTree {
// amounts to the position of the parent node.
//
// When drawing nodes, I don't know how to persist the level of indent.
pub fn position(&self, idx: usize) -> (usize, usize) {
unimplemented!()
// unimplemented!()
/*
let node = &self.nodes[idx];
match node.parent {
@ -337,7 +366,6 @@ impl DepthTree {
None => (0, 0),
}
*/
}
/*
// Given a node, do a postorder traversal to figure out the width of the node based on all of
@ -375,8 +403,88 @@ impl DepthTree {
}
impl<'a> From<&'a GameTree> for DepthTree {
fn from(root: &'a GameTree) -> Self {
unimplemented!()
fn from(tree: &'a GameTree) -> Self {
// Like in the conversion from SGF to GameTree, I need to traverse the entire tree one node
// at a time, keeping track of node ids as we go. I'm going to go with a depth-first
// traversal. When generating each node, I think I want to generate all of the details of
// the node as we go.
let source_root_node = tree.root();
match source_root_node {
Some(source_root_node) => {
// Do the real work
// The id_map indexes from the source tree to the destination tree. Reverse
// indexing is accomplished by looking at the node_id in a node in the destination
// tree.
let mut id_map: HashMap<slab_tree::NodeId, slab_tree::NodeId> = HashMap::new();
let mut tree = slab_tree::Tree::new();
let mut iter = source_root_node.traverse_pre_order();
let _ = iter.next().unwrap(); // we already know that the first element to be
// returned is the root node, and that the root node
// already exists. Otherwise we wouldn't even be in
// this branch.
let dest_root_id = tree.set_root(SizeNode {
node_id: source_root_node.node_id(),
parent: None,
depth: 0,
width: 0,
});
id_map.insert(source_root_node.node_id(), dest_root_id);
for source_node in iter {
let dest_parent_id = id_map
.get(&source_node.parent().unwrap().node_id())
.unwrap();
let mut dest_parent = tree.get_mut(*dest_parent_id).unwrap();
let new_depth_node = SizeNode {
node_id: source_node.node_id(),
parent: Some(*dest_parent_id),
depth: 1 + dest_parent.data().depth,
width: dest_parent.data().width,
};
let new_node_id = dest_parent.append(new_depth_node).node_id();
match tree
.get(new_node_id)
.unwrap()
.prev_sibling()
.map(|node| node.data().width)
{
None => {}
Some(previous_width) => {
let mut new_node = tree.get_mut(new_node_id).unwrap();
new_node.data().width = previous_width + 1;
}
}
/*
let new_node = tree.get_mut(*dest_parent_id).unwrap().append(new_depth_node);
let previous_node = new_node.prev_sibling();
match previous_node {
None => {}
}
*/
/*
match dest_noderef.prev_sibling() {
None => {}
Some(mut node) => { dest_noderef.data().width = node.data().width + 1 }
}
*/
id_map.insert(source_node.node_id(), new_node_id);
}
Self(tree)
}
None => Self::new(),
}
}
}
@ -510,7 +618,8 @@ mod test {
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
))).node_id();
)))
.node_id();
let node_c = game_tree
.get_mut(node_b)
@ -518,7 +627,8 @@ mod test {
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
))).node_id();
)))
.node_id();
let node_d = game_tree
.get_mut(node_c)
@ -526,7 +636,8 @@ mod test {
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
))).node_id();
)))
.node_id();
let node_e = game_tree
.get_mut(node_c)
@ -534,7 +645,8 @@ mod test {
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
))).node_id();
)))
.node_id();
let node_f = game_tree
.get_mut(node_c)
@ -542,7 +654,8 @@ mod test {
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
))).node_id();
)))
.node_id();
let node_g = game_tree
.get_mut(node_a)
@ -550,7 +663,8 @@ mod test {
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
))).node_id();
)))
.node_id();
let node_h = game_tree
.get_mut(node_a)
@ -558,7 +672,8 @@ mod test {
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
))).node_id();
)))
.node_id();
let _ = game_tree
.get_mut(node_h)
@ -566,7 +681,8 @@ mod test {
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
)));
)))
.node_id();
game_tree
}
@ -575,6 +691,10 @@ mod test {
fn it_can_calculate_depth_from_game_tree() {
let game_tree = branching_tree();
let tree = DepthTree::from(&game_tree);
assert_eq!(
game_tree.root().unwrap().traverse_pre_order().count(),
tree.0.root().unwrap().traverse_pre_order().count()
);
assert_eq!(tree.max_depth(), 3);
}
@ -582,13 +702,35 @@ mod test {
fn it_calculates_horizontal_position_of_nodes() {
let game_tree = branching_tree();
let tree = DepthTree::from(&game_tree);
assert_eq!(tree.position(2), (2, 0));
assert_eq!(tree.position(1), (1, 0));
assert_eq!(tree.position(0), (0, 0));
assert_eq!(tree.position(4), (3, 1));
assert_eq!(tree.position(5), (3, 2));
assert_eq!(tree.position(6), (1, 3));
assert_eq!(tree.position(7), (1, 4));
let node_a = tree.root().unwrap();
assert_eq!(node_a.data().position(), (0, 0));
let node_b = node_a.first_child().unwrap();
assert_eq!(node_b.data().position(), (1, 0));
let node_g = node_b.next_sibling().unwrap();
assert_eq!(node_g.data().position(), (1, 1));
let node_h = node_g.next_sibling().unwrap();
assert_eq!(node_h.data().position(), (1, 2));
let node_c = node_b.first_child().unwrap();
assert_eq!(node_c.data().position(), (2, 0));
let node_d = node_c.first_child().unwrap();
assert_eq!(node_d.data().position(), (3, 0));
let node_i = node_h.first_child().unwrap();
assert_eq!(node_i.data().position(), (2, 2));
/*
assert_eq!(tree.position(test_tree.node_c), (2, 0));
assert_eq!(tree.position(test_tree.node_b), (1, 0));
assert_eq!(tree.position(test_tree.node_a), (0, 0));
assert_eq!(tree.position(test_tree.node_d), (3, 1));
assert_eq!(tree.position(test_tree.node_e), (3, 2));
assert_eq!(tree.position(test_tree.node_f), (1, 3));
assert_eq!(tree.position(test_tree.node_g), (1, 4));
*/
}
#[ignore]