Matrix transformations
This commit is contained in:
parent
971206d325
commit
a2aa132886
|
@ -1,5 +1,5 @@
|
|||
mod ppm;
|
||||
|
||||
pub mod transforms;
|
||||
pub mod types;
|
||||
|
||||
pub use ppm::PPM;
|
||||
|
|
|
@ -0,0 +1,192 @@
|
|||
use crate::types::Matrix;
|
||||
|
||||
pub fn translation(x: f64, y: f64, z: f64) -> Matrix {
|
||||
Matrix::from([
|
||||
[1., 0., 0., x],
|
||||
[0., 1., 0., y],
|
||||
[0., 0., 1., z],
|
||||
[0., 0., 0., 1.],
|
||||
])
|
||||
}
|
||||
|
||||
pub fn scaling(x: f64, y: f64, z: f64) -> Matrix {
|
||||
Matrix::from([
|
||||
[x, 0., 0., 0.],
|
||||
[0., y, 0., 0.],
|
||||
[0., 0., z, 0.],
|
||||
[0., 0., 0., 1.],
|
||||
])
|
||||
}
|
||||
|
||||
pub fn rotation_x(r: f64) -> Matrix {
|
||||
Matrix::from([
|
||||
[1., 0., 0., 0.],
|
||||
[0., r.cos(), -r.sin(), 0.],
|
||||
[0., r.sin(), r.cos(), 0.],
|
||||
[0., 0., 0., 1.],
|
||||
])
|
||||
}
|
||||
|
||||
pub fn rotation_y(r: f64) -> Matrix {
|
||||
Matrix::from([
|
||||
[r.cos(), 0., r.sin(), 0.],
|
||||
[0., 1., 0., 0.],
|
||||
[-r.sin(), 0., r.cos(), 0.],
|
||||
[0., 0., 0., 1.],
|
||||
])
|
||||
}
|
||||
|
||||
pub fn rotation_z(r: f64) -> Matrix {
|
||||
Matrix::from([
|
||||
[r.cos(), -r.sin(), 0., 0.],
|
||||
[r.sin(), r.cos(), 0., 0.],
|
||||
[0., 0., 1., 0.],
|
||||
[0., 0., 0., 1.],
|
||||
])
|
||||
}
|
||||
|
||||
pub fn shearing(
|
||||
x_by_y: f64,
|
||||
x_by_z: f64,
|
||||
y_by_x: f64,
|
||||
y_by_z: f64,
|
||||
z_by_x: f64,
|
||||
z_by_y: f64,
|
||||
) -> Matrix {
|
||||
Matrix::from([
|
||||
[1., x_by_y, x_by_z, 0.],
|
||||
[y_by_x, 1., y_by_z, 0.],
|
||||
[z_by_x, z_by_y, 1., 0.],
|
||||
[0., 0., 0., 1.],
|
||||
])
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
use crate::types::{Point, Vector};
|
||||
use std::f64::consts::PI;
|
||||
|
||||
#[test]
|
||||
fn multiply_by_translation_matrix() {
|
||||
let tr = translation(5., -3., 2.);
|
||||
let p = Point::new(-3., 4., 5.);
|
||||
assert_eq!(tr.clone() * p, Point::new(2., 1., 7.));
|
||||
|
||||
let inv = tr.inverse();
|
||||
assert_eq!(inv * p, Point::new(-8., 7., 3.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn translation_does_not_affect_vectors() {
|
||||
let tr = translation(5., -3., 2.);
|
||||
let v = Vector::new(-3., 4., 5.);
|
||||
assert_eq!(tr.clone() * v, v);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn scaling_matrix_applied_to_point() {
|
||||
let tr = scaling(2., 3., 4.);
|
||||
let p = Point::new(-4., 6., 8.);
|
||||
let v = Vector::new(-4., 6., 8.);
|
||||
|
||||
assert_eq!(tr.clone() * p, Point::new(-8., 18., 32.));
|
||||
assert_eq!(tr * v, Vector::new(-8., 18., 32.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn reflection_is_scaling_by_negative_value() {
|
||||
let tr = scaling(-1., 1., 1.);
|
||||
let p = Point::new(2., 3., 4.);
|
||||
assert_eq!(tr * p, Point::new(-2., 3., 4.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn rotate_point_around_x() {
|
||||
let p = Point::new(0., 1., 0.);
|
||||
let half_quarter = rotation_x(PI / 4.);
|
||||
let full_quarter = rotation_x(PI / 2.);
|
||||
assert_eq!(
|
||||
half_quarter * p,
|
||||
Point::new(0., 2_f64.sqrt() / 2., 2_f64.sqrt() / 2.)
|
||||
);
|
||||
assert_eq!(full_quarter * p, Point::new(0., 0., 1.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn inverse_rotates_opposite_direction() {
|
||||
let p = Point::new(0., 1., 0.);
|
||||
let half_quarter = rotation_x(PI / 4.);
|
||||
let inv = half_quarter.inverse();
|
||||
assert_eq!(
|
||||
inv * p,
|
||||
Point::new(0., 2_f64.sqrt() / 2., -2_f64.sqrt() / 2.)
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn rotate_around_y() {
|
||||
let p = Point::new(0., 0., 1.);
|
||||
let half_quarter = rotation_y(PI / 4.);
|
||||
let full_quarter = rotation_y(PI / 2.);
|
||||
assert_eq!(
|
||||
half_quarter * p,
|
||||
Point::new(2_f64.sqrt() / 2., 0., 2_f64.sqrt() / 2.)
|
||||
);
|
||||
assert_eq!(full_quarter * p, Point::new(1., 0., 0.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn rotate_around_z() {
|
||||
let p = Point::new(0., 1., 0.);
|
||||
let half_quarter = rotation_z(PI / 4.);
|
||||
let full_quarter = rotation_z(PI / 2.);
|
||||
assert_eq!(
|
||||
half_quarter * p,
|
||||
Point::new(-2_f64.sqrt() / 2., 2_f64.sqrt() / 2., 0.)
|
||||
);
|
||||
assert_eq!(full_quarter * p, Point::new(-1., 0., 0.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn shear_moves_x_proportionally_to_y() {
|
||||
let transform = shearing(1., 0., 0., 0., 0., 0.);
|
||||
let p = Point::new(2., 3., 4.);
|
||||
assert_eq!(transform * p, Point::new(5., 3., 4.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn shear_moves_x_proportionally_to_z() {
|
||||
let transform = shearing(0., 1., 0., 0., 0., 0.);
|
||||
let p = Point::new(2., 3., 4.);
|
||||
assert_eq!(transform * p, Point::new(6., 3., 4.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn shear_moves_y_proportionally_to_x() {
|
||||
let transform = shearing(0., 0., 1., 0., 0., 0.);
|
||||
let p = Point::new(2., 3., 4.);
|
||||
assert_eq!(transform * p, Point::new(2., 5., 4.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn shear_moves_y_proportionally_to_z() {
|
||||
let transform = shearing(0., 0., 0., 1., 0., 0.);
|
||||
let p = Point::new(2., 3., 4.);
|
||||
assert_eq!(transform * p, Point::new(2., 7., 4.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn shear_moves_z_proportionally_to_x() {
|
||||
let transform = shearing(0., 0., 0., 0., 1., 0.);
|
||||
let p = Point::new(2., 3., 4.);
|
||||
assert_eq!(transform * p, Point::new(2., 3., 6.));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn shear_moves_z_proportionally_to_y() {
|
||||
let transform = shearing(0., 0., 0., 0., 0., 1.);
|
||||
let p = Point::new(2., 3., 4.);
|
||||
assert_eq!(transform * p, Point::new(2., 3., 7.));
|
||||
}
|
||||
}
|
|
@ -1,4 +1,4 @@
|
|||
use crate::types::{eq_f64, Tuple};
|
||||
use crate::types::{eq_f64, Tuple, Point, Vector};
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Matrix {
|
||||
|
@ -44,7 +44,11 @@ impl Matrix {
|
|||
m
|
||||
}
|
||||
|
||||
pub fn invert(&self) -> Self {
|
||||
pub fn is_invertible(&self) -> bool {
|
||||
!eq_f64(self.determinant(), 0.)
|
||||
}
|
||||
|
||||
pub fn inverse(&self) -> Self {
|
||||
let mut m = Matrix::new(self.size);
|
||||
let determinant = self.determinant();
|
||||
for row in 0..self.size {
|
||||
|
@ -83,10 +87,6 @@ impl Matrix {
|
|||
}
|
||||
}
|
||||
|
||||
fn invertible(&self) -> bool {
|
||||
!eq_f64(self.determinant(), 0.)
|
||||
}
|
||||
|
||||
fn submatrix(&self, row: usize, column: usize) -> Self {
|
||||
let mut m = Self::new(self.size - 1);
|
||||
|
||||
|
@ -209,6 +209,20 @@ impl std::ops::Mul<Tuple> for Matrix {
|
|||
}
|
||||
}
|
||||
|
||||
impl std::ops::Mul<Point> for Matrix {
|
||||
type Output = Point;
|
||||
fn mul(self, rside: Point) -> Point {
|
||||
Point::from(self * *rside)
|
||||
}
|
||||
}
|
||||
|
||||
impl std::ops::Mul<Vector> for Matrix {
|
||||
type Output = Vector;
|
||||
fn mul(self, rside: Vector) -> Vector {
|
||||
Vector::from(self * *rside)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
@ -401,7 +415,7 @@ mod tests {
|
|||
]);
|
||||
|
||||
assert_eq!(m.determinant(), -2120.);
|
||||
assert!(m.invertible());
|
||||
assert!(m.is_invertible());
|
||||
|
||||
let m = Matrix::from([
|
||||
[-4., 2., -2., -3.],
|
||||
|
@ -410,7 +424,7 @@ mod tests {
|
|||
[0., 0., 0., 0.],
|
||||
]);
|
||||
assert_eq!(m.determinant(), 0.);
|
||||
assert!(!m.invertible());
|
||||
assert!(!m.is_invertible());
|
||||
|
||||
let m = Matrix::from([
|
||||
[-5., 2., 6., -8.],
|
||||
|
@ -431,6 +445,52 @@ mod tests {
|
|||
assert_eq!(m.cofactor(3, 2), 105.);
|
||||
assert!(eq_f64(expected.cell(2, 3), 105. / 532.));
|
||||
|
||||
assert_eq!(m.invert(), expected);
|
||||
assert_eq!(m.inverse(), expected);
|
||||
|
||||
let m = Matrix::from([
|
||||
[8., -5., 9., 2.],
|
||||
[7., 5., 6., 1.],
|
||||
[-6., 0., 9., 6.],
|
||||
[-3., 0., -9., -4.],
|
||||
]);
|
||||
let expected = Matrix::from([
|
||||
[-0.15385, -0.15385, -0.28205, -0.53846],
|
||||
[-0.07692, 0.12308, 0.02564, 0.03077],
|
||||
[0.35897, 0.35897, 0.43590, 0.92308],
|
||||
[-0.69231, -0.69231, -0.76923, -1.92308],
|
||||
]);
|
||||
assert_eq!(m.inverse(), expected);
|
||||
|
||||
let m = Matrix::from([
|
||||
[9., 3., 0., 9.],
|
||||
[-5., -2., -6., -3.],
|
||||
[-4., 9., 6., 4.],
|
||||
[-7., 6., 6., 2.],
|
||||
]);
|
||||
let expected = Matrix::from([
|
||||
[-0.04074, -0.07778, 0.14444, -0.22222],
|
||||
[-0.07778, 0.03333, 0.36667, -0.33333],
|
||||
[-0.02901, -0.14630, -0.10926, 0.12963],
|
||||
[0.17778, 0.06667, -0.26667, 0.33333],
|
||||
]);
|
||||
assert_eq!(m.inverse(), expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn multiply_product_by_inverse() {
|
||||
let a = Matrix::from([
|
||||
[3., -9., 7., 3.],
|
||||
[3., -8., 2., -9.],
|
||||
[-4., 4., 4., 1.],
|
||||
[-6., 5., -1., 1.],
|
||||
]);
|
||||
let b = Matrix::from([
|
||||
[8., 2., 2., 2.],
|
||||
[3., -1., 7., 0.],
|
||||
[7., 0., 5., 4.],
|
||||
[6., -2., 0., 5.],
|
||||
]);
|
||||
let c = a.clone() * b.clone();
|
||||
assert_eq!(c * b.inverse(), a);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue