Compare commits

..

No commits in common. "20b02fbd90d3e7c735c1e75a82cb9e0c80a0f2e2" and "3c94f906a6d206ac87a2639790800fcfc733c5e7" have entirely different histories.

17 changed files with 291 additions and 758 deletions

18
Cargo.lock generated
View File

@ -2503,16 +2503,6 @@ dependencies = [
"version_check 0.9.4",
]
[[package]]
name = "nary_tree"
version = "0.4.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "fb86edb8951cb3852cbb33ef558650e9f18c9d2e7fd79a6849c984a3825719c7"
dependencies = [
"slab",
"snowflake",
]
[[package]]
name = "native-tls"
version = "0.2.11"
@ -2715,7 +2705,6 @@ dependencies = [
"config-derive",
"cool_asserts",
"grid",
"nary_tree",
"serde 1.0.193",
"serde_json",
"sgf",
@ -3696,7 +3685,6 @@ version = "0.1.0"
dependencies = [
"chrono",
"cool_asserts",
"nary_tree",
"nom",
"serde 1.0.193",
"thiserror",
@ -3778,12 +3766,6 @@ version = "1.11.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4dccd0940a2dcdf68d092b8cbab7dc0ad8fa938bf95787e1b916b0e3d0e8e970"
[[package]]
name = "snowflake"
version = "1.3.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "27207bb65232eda1f588cf46db2fee75c0808d557f6b3cf19a75f5d6d7c94df1"
[[package]]
name = "socket2"
version = "0.4.10"

View File

@ -7917,28 +7917,6 @@ rec {
};
resolvedDefaultFeatures = [ "default" ];
};
"nary_tree" = rec {
crateName = "nary_tree";
version = "0.4.3";
edition = "2021";
sha256 = "1iqray1a716995l9mmvz5sfqrwg9a235bvrkpcn8bcqwjnwfv1pv";
authors = [
"Ian <iwburns8@gmail.com>"
"David Cohen <dacohen@pm.me>"
];
dependencies = [
{
name = "slab";
packageId = "slab";
}
{
name = "snowflake";
packageId = "snowflake";
}
];
features = {
};
};
"native-tls" = rec {
crateName = "native-tls";
version = "0.2.11";
@ -8573,10 +8551,6 @@ rec {
name = "grid";
packageId = "grid";
}
{
name = "nary_tree";
packageId = "nary_tree";
}
{
name = "serde";
packageId = "serde 1.0.193";
@ -11596,10 +11570,6 @@ rec {
packageId = "chrono";
features = [ "serde" ];
}
{
name = "nary_tree";
packageId = "nary_tree";
}
{
name = "nom";
packageId = "nom";
@ -11833,21 +11803,6 @@ rec {
};
resolvedDefaultFeatures = [ "const_generics" "const_new" "union" ];
};
"snowflake" = rec {
crateName = "snowflake";
version = "1.3.0";
edition = "2015";
sha256 = "1wadr7bxdxbmkbqkqsvzan6q1h3mxqpxningi3ss3v9jaav7n817";
authors = [
"Steven Allen <steven@stebalien.com>"
];
features = {
"serde" = [ "dep:serde" ];
"serde_derive" = [ "dep:serde_derive" ];
"serde_support" = [ "serde" "serde_derive" ];
};
resolvedDefaultFeatures = [ "default" ];
};
"socket2 0.4.10" = rec {
crateName = "socket2";
version = "0.4.10";

View File

@ -223,7 +223,6 @@
"registry+https://github.com/rust-lang/crates.io-index#mio@0.8.10": "02gyaxvaia9zzi4drrw59k9s0j6pa5d1y2kv7iplwjipdqlhngcg",
"registry+https://github.com/rust-lang/crates.io-index#modifier@0.1.0": "0n3fmgli1nsskl0whrfzm1gk0rmwwl6pw1q4nb9sqqmn5h8wkxa1",
"registry+https://github.com/rust-lang/crates.io-index#multer@2.1.0": "1hjiphaypj3phqaj5igrzcia9xfmf4rr4ddigbh8zzb96k1bvb01",
"registry+https://github.com/rust-lang/crates.io-index#nary_tree@0.4.3": "1iqray1a716995l9mmvz5sfqrwg9a235bvrkpcn8bcqwjnwfv1pv",
"registry+https://github.com/rust-lang/crates.io-index#native-tls@0.2.11": "0bmrlg0fmzxaycjpkgkchi93av07v2yf9k33gc12ca9gqdrn28h7",
"registry+https://github.com/rust-lang/crates.io-index#nix@0.27.1": "0ly0kkmij5f0sqz35lx9czlbk6zpihb7yh1bsy4irzwfd2f4xc1f",
"registry+https://github.com/rust-lang/crates.io-index#no-std-compat@0.4.1": "132vrf710zsdp40yp1z3kgc2ss8pi0z4gmihsz3y7hl4dpd56f5r",
@ -343,7 +342,6 @@
"registry+https://github.com/rust-lang/crates.io-index#siphasher@0.3.11": "03axamhmwsrmh0psdw3gf7c0zc4fyl5yjxfifz9qfka6yhkqid9q",
"registry+https://github.com/rust-lang/crates.io-index#slab@0.4.9": "0rxvsgir0qw5lkycrqgb1cxsvxzjv9bmx73bk5y42svnzfba94lg",
"registry+https://github.com/rust-lang/crates.io-index#smallvec@1.11.2": "0w79x38f7c0np7hqfmzrif9zmn0avjvvm31b166zdk9d1aad1k2d",
"registry+https://github.com/rust-lang/crates.io-index#snowflake@1.3.0": "1wadr7bxdxbmkbqkqsvzan6q1h3mxqpxningi3ss3v9jaav7n817",
"registry+https://github.com/rust-lang/crates.io-index#socket2@0.4.10": "03ack54dxhgfifzsj14k7qa3r5c9wqy3v6mqhlim99cc03y1cycz",
"registry+https://github.com/rust-lang/crates.io-index#socket2@0.5.5": "1sgq315f1njky114ip7wcy83qlphv9qclprfjwvxcpfblmcsqpvv",
"registry+https://github.com/rust-lang/crates.io-index#spin@0.5.2": "0b84m6dbzrwf2kxylnw82d3dr8w06av7rfkr8s85fb5f43rwyqvf",

View File

@ -14,7 +14,6 @@ sgf = { path = "../../sgf" }
grid = { version = "0.9" }
serde_json = { version = "1" }
serde = { version = "1", features = [ "derive" ] }
nary_tree = { version = "0.4" }
thiserror = { version = "1" }
uuid = { version = "0.8", features = ["v4", "serde"] }

View File

@ -81,7 +81,7 @@ impl From<HotseatPlayerRequest> for Player {
}
*/
#[derive(Clone, Debug)]
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum CoreResponse {
Library(library::LibraryResponse),
Settings(settings::SettingsResponse),

View File

@ -42,8 +42,7 @@ impl Database {
.unwrap();
match parse_sgf(&buffer) {
Ok(sgfs) => {
let mut sgfs =
sgfs.into_iter().flatten().collect::<Vec<sgf::GameRecord>>();
let mut sgfs = sgfs.into_iter().flatten().collect::<Vec<sgf::GameRecord>>();
games.append(&mut sgfs);
}
Err(err) => println!("Error parsing {:?}: {:?}", entry.path(), err),

View File

@ -29,6 +29,5 @@ pub mod library;
pub mod settings;
mod types;
pub use types::{
BoardError, Color, Config, ConfigOption, DepthTree, LibraryPath, Player, Rank, Size,
};
pub use types::{BoardError, Color, Config, ConfigOption, LibraryPath, Player, Rank, Size, Tree};

View File

@ -14,18 +14,18 @@ General Public License for more details.
You should have received a copy of the GNU General Public License along with On the Grid. If not, see <https://www.gnu.org/licenses/>.
*/
use crate::Core;
use crate::{Core};
use serde::{Deserialize, Serialize};
use sgf::GameRecord;
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum LibraryRequest {
ListGames,
ListGames
}
#[derive(Clone, Debug)]
#[derive(Clone, Debug, Serialize, Deserialize)]
pub enum LibraryResponse {
Games(Vec<GameRecord>),
Games(Vec<GameRecord>)
}
async fn handle_list_games(model: &Core) -> LibraryResponse {
@ -39,8 +39,10 @@ async fn handle_list_games(model: &Core) -> LibraryResponse {
}
}
pub async fn handle(model: &Core, request: LibraryRequest) -> LibraryResponse {
match request {
LibraryRequest::ListGames => handle_list_games(model).await,
}
}

View File

@ -2,11 +2,10 @@ use crate::goban::{Coordinate, Goban};
use config::define_config;
use config_derive::ConfigOption;
use serde::{Deserialize, Serialize};
use sgf::GameTree;
use std::{
collections::{HashMap, VecDeque}, fmt, ops::Deref, path::PathBuf, time::Duration
};
use sgf::GameNode;
use std::{cell::RefCell, collections::VecDeque, fmt, path::PathBuf, time::Duration};
use thiserror::Error;
use uuid::Uuid;
define_config! {
LibraryPath(LibraryPath),
@ -230,7 +229,6 @@ impl GameState {
}
}
/*
// To properly generate a tree, I need to know how deep to go. Then I can backtrace. Each node
// needs to have a depth. Given a tree, the depth of the node is just the distance from the root.
// This seems obvious, but I had to write it to discover how important that fact was.
@ -240,49 +238,19 @@ impl GameState {
pub struct Tree<T> {
nodes: Vec<Node<T>>,
}
*/
pub struct DepthTree(nary_tree::Tree<SizeNode>);
impl Deref for DepthTree {
type Target = nary_tree::Tree<SizeNode>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
#[derive(Debug)]
pub struct SizeNode {
/// Use this to map back to the node in the original game tree. This way we know how to
/// correspond from a node in the review tree back to there.
#[allow(dead_code)]
game_node_id: nary_tree::NodeId,
/// How deep into the tree is this node?
pub struct Node<T> {
pub id: usize,
node: T,
parent: Option<usize>,
depth: usize,
/// How far from the leftmost margin is this node?
width: usize,
width: RefCell<Option<usize>>,
children: Vec<usize>,
}
impl SizeNode {
pub fn position(&self) -> (usize, usize) {
(self.depth, self.width)
}
}
impl DepthTree {
// My previous work to convert from a node tree to this tree-with-width dependend on the node tree
// being a recursive data structure. Now I need to find a way to convert a slab tree to this width
// tree.
//
// It all feels like a lot of custom weirdness. I shouldn't need a bunch of custom data structures,
// so I want to eliminate the "Tree" above and keep using the slab tree. I think I should be able
// to build these Node objects without needing a custom data structure.
fn new() -> Self {
Self(nary_tree::Tree::new())
/*
impl<T> Tree<T> {
fn new(root: T) -> Self {
Tree {
nodes: vec![Node {
id: 0,
@ -293,10 +261,8 @@ impl DepthTree {
children: vec![],
}],
}
*/
}
/*
pub fn node(&self, idx: usize) -> &T {
&self.nodes[idx].node
}
@ -320,21 +286,12 @@ impl DepthTree {
parent.children.push(next_idx);
next_idx
}
*/
pub fn max_depth(&self) -> usize {
self.0
.root()
.unwrap()
.traverse_pre_order()
.fold(0, |max, node| {
println!("node depth: {}", node.data().depth);
if node.data().depth > max {
node.data().depth
} else {
max
}
})
self.nodes.iter().fold(
0,
|max, node| if node.depth > max { node.depth } else { max },
)
}
// Since I know the width of a node, now I want to figure out its placement in the larger
@ -352,9 +309,7 @@ impl DepthTree {
// amounts to the position of the parent node.
//
// When drawing nodes, I don't know how to persist the level of indent.
// unimplemented!()
/*
pub fn position(&self, idx: usize) -> (usize, usize) {
let node = &self.nodes[idx];
match node.parent {
Some(parent_idx) => {
@ -371,9 +326,8 @@ impl DepthTree {
// Root nodes won't have a parent, so just put them in the first column
None => (0, 0),
}
*/
}
/*
// Given a node, do a postorder traversal to figure out the width of the node based on all of
// its children. This is equivalent to the widest of all of its children at all depths.
//
@ -399,100 +353,14 @@ impl DepthTree {
width
}
*/
pub fn bfs_iter(&self) -> BFSIter<'_, SizeNode> {
pub fn bfs_iter(&self) -> BFSIter<T> {
let mut queue = VecDeque::new();
queue.push_back(self.0.root().unwrap());
BFSIter { queue }
queue.push_back(&self.nodes[0]);
BFSIter { tree: self, queue }
}
}
impl<'a> From<&'a GameTree> for DepthTree {
fn from(tree: &'a GameTree) -> Self {
// Like in the conversion from SGF to GameTree, I need to traverse the entire tree one node
// at a time, keeping track of node ids as we go. I'm going to go with a depth-first
// traversal. When generating each node, I think I want to generate all of the details of
// the node as we go.
let source_root_node = tree.root();
match source_root_node {
Some(source_root_node) => {
// Do the real work
// The id_map indexes from the source tree to the destination tree. Reverse
// indexing is accomplished by looking at the node_id in a node in the destination
// tree.
let mut id_map: HashMap<nary_tree::NodeId, nary_tree::NodeId> = HashMap::new();
let mut tree = nary_tree::Tree::new();
let mut iter = source_root_node.traverse_pre_order();
let _ = iter.next().unwrap(); // we already know that the first element to be
// returned is the root node, and that the root node
// already exists. Otherwise we wouldn't even be in
// this branch.
let dest_root_id = tree.set_root(SizeNode {
game_node_id: source_root_node.node_id(),
depth: 0,
width: 0,
});
id_map.insert(source_root_node.node_id(), dest_root_id);
for source_node in iter {
let dest_parent_id = id_map
.get(&source_node.parent().unwrap().node_id())
.unwrap();
let mut dest_parent = tree.get_mut(*dest_parent_id).unwrap();
let new_depth_node = SizeNode {
game_node_id: source_node.node_id(),
depth: 1 + dest_parent.data().depth,
width: dest_parent.data().width,
};
let new_node_id = dest_parent.append(new_depth_node).node_id();
match tree
.get(new_node_id)
.unwrap()
.prev_sibling()
.map(|node| node.data().width)
{
None => {}
Some(previous_width) => {
let mut new_node = tree.get_mut(new_node_id).unwrap();
new_node.data().width = previous_width + 1;
}
}
/*
let new_node = tree.get_mut(*dest_parent_id).unwrap().append(new_depth_node);
let previous_node = new_node.prev_sibling();
match previous_node {
None => {}
}
*/
/*
match dest_noderef.prev_sibling() {
None => {}
Some(mut node) => { dest_noderef.data().width = node.data().width + 1 }
}
*/
id_map.insert(source_node.node_id(), new_node_id);
}
Self(tree)
}
None => Self::new(),
}
}
}
/*
impl<'a> From<&'a GameNode> for Tree<Uuid> {
fn from(root: &'a GameNode) -> Self {
fn add_subtree(tree: &mut Tree<Uuid>, parent_idx: usize, node: &GameNode) {
@ -522,31 +390,32 @@ impl<'a> From<&'a GameNode> for Tree<Uuid> {
tree
}
}
*/
pub struct BFSIter<'a, T> {
queue: VecDeque<nary_tree::NodeRef<'a, T>>,
tree: &'a Tree<T>,
queue: VecDeque<&'a Node<T>>,
}
impl<'a, T> Iterator for BFSIter<'a, T> {
type Item = &'a T;
type Item = &'a Node<T>;
fn next(&mut self) -> Option<Self::Item> {
let retval = self.queue.pop_front();
if let Some(ref retval) = retval {
if let Some(retval) = retval {
retval
.children()
.for_each(|noderef| self.queue.push_back(noderef));
.children
.iter()
.for_each(|idx| self.queue.push_back(&self.tree.nodes[*idx]));
}
retval.map(|retval| retval.data())
retval
}
}
#[cfg(test)]
mod test {
use super::*;
// use sgf::{GameRecord, GameTree, GameType, Move, MoveNode};
use sgf::{GameNode, GameTree, Move, MoveNode};
use cool_asserts::assert_matches;
use sgf::{Move, MoveNode};
#[test]
fn current_player_changes_after_move() {
@ -605,193 +474,116 @@ mod test {
// B G H
// C I
// D E F
fn branching_tree() -> GameTree {
let mut game_tree = GameTree::default();
let node_a = game_tree.set_root(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
)));
let node_b = game_tree
.get_mut(node_a)
.unwrap()
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
)))
.node_id();
let node_c = game_tree
.get_mut(node_b)
.unwrap()
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
)))
.node_id();
let node_d = game_tree
.get_mut(node_c)
.unwrap()
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
)))
.node_id();
let node_e = game_tree
.get_mut(node_c)
.unwrap()
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
)))
.node_id();
let node_f = game_tree
.get_mut(node_c)
.unwrap()
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
)))
.node_id();
let node_g = game_tree
.get_mut(node_a)
.unwrap()
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
)))
.node_id();
let node_h = game_tree
.get_mut(node_a)
.unwrap()
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
)))
.node_id();
let _ = game_tree
.get_mut(node_h)
.unwrap()
.append(GameNode::MoveNode(MoveNode::new(
sgf::Color::Black,
Move::Move("dp".to_owned()),
)))
.node_id();
game_tree
}
#[test]
fn it_can_calculate_depth_from_game_tree() {
let game_tree = branching_tree();
let tree = DepthTree::from(&game_tree);
assert_eq!(
game_tree.root().unwrap().traverse_pre_order().count(),
tree.0.root().unwrap().traverse_pre_order().count()
);
let mut node_a = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let mut node_b = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let mut node_c = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_d = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_e = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_f = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_g = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let mut node_h = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_i = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
node_c.children.push(GameNode::MoveNode(node_d));
node_c.children.push(GameNode::MoveNode(node_e));
node_c.children.push(GameNode::MoveNode(node_f));
node_b.children.push(GameNode::MoveNode(node_c));
node_h.children.push(GameNode::MoveNode(node_i));
node_a.children.push(GameNode::MoveNode(node_b));
node_a.children.push(GameNode::MoveNode(node_g));
node_a.children.push(GameNode::MoveNode(node_h));
let game_tree = GameNode::MoveNode(node_a);
let tree = Tree::from(&game_tree);
assert_eq!(tree.max_depth(), 3);
}
// A
// B G H
// C I
// D E F
#[test]
fn it_calculates_horizontal_position_of_nodes() {
let game_tree = branching_tree();
let tree = DepthTree::from(&game_tree);
let mut node_a = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let mut node_b = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let mut node_c = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_d = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_e = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_f = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_g = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let mut node_h = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_i = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_a = tree.root().unwrap();
assert_eq!(node_a.data().position(), (0, 0));
node_c.children.push(GameNode::MoveNode(node_d));
node_c.children.push(GameNode::MoveNode(node_e));
node_c.children.push(GameNode::MoveNode(node_f));
let node_b = node_a.first_child().unwrap();
assert_eq!(node_b.data().position(), (1, 0));
let node_g = node_b.next_sibling().unwrap();
assert_eq!(node_g.data().position(), (1, 1));
let node_h = node_g.next_sibling().unwrap();
assert_eq!(node_h.data().position(), (1, 2));
node_b.children.push(GameNode::MoveNode(node_c));
let node_c = node_b.first_child().unwrap();
assert_eq!(node_c.data().position(), (2, 0));
node_h.children.push(GameNode::MoveNode(node_i));
let node_d = node_c.first_child().unwrap();
assert_eq!(node_d.data().position(), (3, 0));
node_a.children.push(GameNode::MoveNode(node_b));
node_a.children.push(GameNode::MoveNode(node_g));
node_a.children.push(GameNode::MoveNode(node_h));
let node_i = node_h.first_child().unwrap();
assert_eq!(node_i.data().position(), (2, 2));
let game_tree = GameNode::MoveNode(node_a);
/*
assert_eq!(tree.position(test_tree.node_c), (2, 0));
assert_eq!(tree.position(test_tree.node_b), (1, 0));
assert_eq!(tree.position(test_tree.node_a), (0, 0));
assert_eq!(tree.position(test_tree.node_d), (3, 1));
assert_eq!(tree.position(test_tree.node_e), (3, 2));
assert_eq!(tree.position(test_tree.node_f), (1, 3));
assert_eq!(tree.position(test_tree.node_g), (1, 4));
*/
let tree = Tree::from(&game_tree);
assert_eq!(tree.position(2), (2, 0));
assert_eq!(tree.position(1), (1, 0));
assert_eq!(tree.position(0), (0, 0));
assert_eq!(tree.position(4), (3, 1));
assert_eq!(tree.position(5), (3, 2));
assert_eq!(tree.position(6), (1, 3));
assert_eq!(tree.position(7), (1, 4));
}
#[ignore]
#[test]
fn breadth_first_iter() {
/*
let mut node_a = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let mut node_b = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let mut node_c = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_d = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_e = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_f = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_g = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let mut node_h = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_i = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let mut node_a = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let mut node_b = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let mut node_c = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_d = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_e = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_f = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_g = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let mut node_h = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let node_i = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
let game = GameRecord::new(
GameType::Go,
Size {
width: 19,
height: 19,
},
Player {
name: Some("Black".to_owned()),
rank: None,
team: None,
},
Player {
name: Some("White".to_owned()),
rank: None,
team: None,
},
);
node_c.children.push(GameNode::MoveNode(node_d.clone()));
node_c.children.push(GameNode::MoveNode(node_e.clone()));
node_c.children.push(GameNode::MoveNode(node_f.clone()));
node_c.children.push(GameNode::MoveNode(node_d.clone()));
node_c.children.push(GameNode::MoveNode(node_e.clone()));
node_c.children.push(GameNode::MoveNode(node_f.clone()));
node_b.children.push(GameNode::MoveNode(node_c.clone()));
node_b.children.push(GameNode::MoveNode(node_c.clone()));
node_h.children.push(GameNode::MoveNode(node_i.clone()));
node_h.children.push(GameNode::MoveNode(node_i.clone()));
node_a.children.push(GameNode::MoveNode(node_b.clone()));
node_a.children.push(GameNode::MoveNode(node_g.clone()));
node_a.children.push(GameNode::MoveNode(node_h.clone()));
node_a.children.push(GameNode::MoveNode(node_b.clone()));
node_a.children.push(GameNode::MoveNode(node_g.clone()));
node_a.children.push(GameNode::MoveNode(node_h.clone()));
let game_tree = GameNode::MoveNode(node_a.clone());
let game_tree = GameNode::MoveNode(node_a.clone());
let tree = Tree::from(&game_tree);
let tree = Tree::from(&game_tree);
let mut iter = tree.bfs_iter();
let mut iter = tree.bfs_iter();
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_a.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_b.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_g.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_h.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_c.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_i.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_d.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_e.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_f.id));
*/
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_a.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_b.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_g.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_h.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_c.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_i.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_d.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_e.id));
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_f.id));
}
}

View File

@ -17,7 +17,7 @@ You should have received a copy of the GNU General Public License along with On
use cairo::Context;
use glib::Object;
use gtk::{prelude::*, subclass::prelude::*};
use otg_core::DepthTree;
use otg_core::Tree;
use sgf::GameRecord;
use std::{cell::RefCell, rc::Rc};
use uuid::Uuid;
@ -28,7 +28,7 @@ const HEIGHT: i32 = 800;
#[derive(Default)]
pub struct ReviewTreePrivate {
record: Rc<RefCell<Option<GameRecord>>>,
tree: Rc<RefCell<Option<DepthTree>>>,
tree: Rc<RefCell<Option<Tree<Uuid>>>>,
}
#[glib::object_subclass]
@ -50,9 +50,7 @@ impl ReviewTree {
pub fn new(record: GameRecord) -> Self {
let s: Self = Object::new();
// TODO: there can be more than one tree, especially in instructional files. Either unify
// them into a single tree in the GameTree, or draw all of them here.
*s.imp().tree.borrow_mut() = Some(DepthTree::from(&record.trees[0]));
*s.imp().tree.borrow_mut() = Some(Tree::from(&record.children[0]));
*s.imp().record.borrow_mut() = Some(record);
s.set_width_request(WIDTH);
@ -69,7 +67,7 @@ impl ReviewTree {
}
pub fn redraw(&self, ctx: &Context, _width: i32, _height: i32) {
let tree: &Option<DepthTree> = &self.imp().tree.borrow();
let tree: &Option<Tree<Uuid>> = &self.imp().tree.borrow();
match tree {
Some(ref tree) => {
for node in tree.bfs_iter() {
@ -78,7 +76,7 @@ impl ReviewTree {
// the parent? do I need to just make it more intrinsically a part of the position
// code?
ctx.set_source_rgb(0.7, 0.7, 0.7);
let (row, column) = node.position();
let (row, column) = tree.position(node.id);
let y = (row as f64) * 20. + 10.;
let x = (column as f64) * 20. + 10.;
ctx.arc(x, y, 5., 0., 2. * std::f64::consts::PI);

View File

@ -55,10 +55,9 @@ impl GameReview {
// It's actually really bad to be just throwing away errors. Panics make everyone unhappy.
// This is not a fatal error, so I'll replace this `unwrap` call with something that
// renders the board and notifies the user of a problem that cannot be resolved.
let board_repr = match record.mainline() {
Some(iter) => otg_core::Goban::default().apply_moves(iter).unwrap(),
None => otg_core::Goban::default(),
};
let board_repr = otg_core::Goban::default()
.apply_moves(record.mainline())
.unwrap();
let board = Goban::new(board_repr, resources);
/*

View File

@ -9,7 +9,6 @@ edition = "2021"
chrono = { version = "0.4", features = [ "serde" ] }
nom = { version = "7" }
serde = { version = "1", features = [ "derive" ] }
nary_tree = { version = "0.4" }
thiserror = { version = "1"}
typeshare = { version = "1" }
uuid = { version = "0.8", features = ["v4", "serde"] }

View File

@ -3,14 +3,7 @@ use crate::{
Color, Date, GameResult, GameType,
};
use serde::{Deserialize, Serialize};
use nary_tree::{NodeId, NodeMut, NodeRef, Tree};
use std::{
collections::{HashMap, HashSet, VecDeque},
fmt,
fmt::Debug,
ops::{Deref, DerefMut},
time::Duration,
};
use std::{collections::HashSet, time::Duration};
use uuid::Uuid;
#[derive(Clone, Debug, PartialEq)]
@ -39,7 +32,7 @@ pub enum SetupNodeError {
#[derive(Clone, Debug, PartialEq)]
pub enum GameNodeError {
UnsupportedGameNode(MoveNodeError, SetupNodeError, parser::Node),
UnsupportedGameNode(MoveNodeError, SetupNodeError),
ConflictingProperty,
ConflictingPosition,
}
@ -59,7 +52,7 @@ pub struct Player {
/// syntax issues, the result of the GameRecord is to have a fully-understood game. However, this
/// doesn't (yet?) go quite to the level of apply the game type (i.e., this is Go, Chess, Yinsh, or
/// whatever).
#[derive(Clone, Debug, PartialEq)]
#[derive(Clone, Debug, PartialEq, Deserialize, Serialize)]
pub struct GameRecord {
pub game_type: GameType,
@ -85,7 +78,7 @@ pub struct GameRecord {
pub overtime: Option<String>,
pub transcriber: Option<String>,
pub trees: Vec<GameTree>,
pub children: Vec<GameNode>,
}
impl GameRecord {
@ -118,40 +111,55 @@ impl GameRecord {
overtime: None,
transcriber: None,
trees: vec![],
children: vec![],
}
}
pub fn nodes(&self) -> Vec<&GameNode> {
self.iter().collect()
}
pub fn iter(&self) -> impl Iterator<Item = &'_ GameNode> {
self.trees
.iter()
.flat_map(|tree| tree.root().unwrap().traverse_pre_order())
.map(|nr| nr.data())
}
/// Generate a list of moves which constitute the main line of the game. This is the game as it
/// was actually played out, and by convention consists of the first node in each list of
/// children.
pub fn mainline(&self) -> Option<impl Iterator<Item = &'_ GameNode>> {
if !self.trees.is_empty() {
Some(MainlineIter {
next: self.trees[0].root(),
tree: &self.trees[0],
})
} else {
None
pub fn mainline(&self) -> Vec<&GameNode> {
let mut moves: Vec<&GameNode> = vec![];
let mut next = self.children.first();
while let Some(node) = next {
// Given that I know that I have a node, and I know that I'm going to push a reference
// to it onto my final list, I want to get the first of its children. And I want to
// keep doing that until there are no more first children.
//
// Just going to push references onto the list. No need to copy the nodes for this.
//
// Pushing a reference onto the list implicitely clones the reference, but not the data
// it is pointing to. This means that each time through the loop, `next` points to
// something else. This isn't being described very well, though, so it's worth
// reviewing in the future.
moves.push(node);
next = match node {
GameNode::MoveNode(node) => node.children.first(),
GameNode::SetupNode(node) => node.children.first(),
};
}
moves
}
}
impl TryFrom<parser::Tree> for GameRecord {
impl Node for GameRecord {
fn children<'a>(&'a self) -> Vec<&'a GameNode> {
self.children.iter().collect::<Vec<&'a GameNode>>()
}
fn add_child(&mut self, node: GameNode) -> &mut GameNode {
self.children.push(node);
self.children.last_mut().unwrap()
}
}
impl TryFrom<&parser::Tree> for GameRecord {
type Error = GameError;
fn try_from(tree: parser::Tree) -> Result<Self, Self::Error> {
fn try_from(tree: &parser::Tree) -> Result<Self, Self::Error> {
let mut ty = None;
let mut size = None;
let mut black_player = Player {
@ -226,7 +234,6 @@ impl TryFrom<parser::Tree> for GameRecord {
}
}
/*
s.children = tree
.root
.next
@ -234,205 +241,33 @@ impl TryFrom<parser::Tree> for GameRecord {
.map(GameNode::try_from)
.collect::<Result<Vec<GameNode>, GameNodeError>>()
.map_err(GameError::InvalidGameNode)?;
*/
s.trees = tree
.root
.next
.into_iter()
.map(recursive_tree_to_slab_tree)
.collect::<Result<Vec<GameTree>, GameError>>()?;
Ok(s)
}
}
fn recursive_tree_to_slab_tree(node: parser::Node) -> Result<GameTree, GameError> {
let mut slab = Tree::new();
let mut nodes: VecDeque<(NodeId, parser::Node)> = VecDeque::new();
let root_id =
slab.set_root(GameNode::try_from(node.clone()).map_err(GameError::InvalidGameNode)?);
nodes.push_back((root_id, node));
// I need to keep track of the current parent, and I need to keep on digging deeper into the
// tree. Given that I have the root, I can then easily find out all of the children.
//
// So, maybe I take the list of children. Assign each one of them to a place in the slab tree.
// Then push the child *and* its ID into a dequeue. So long as the dequeue is not empty, I want
// to pop a node and its ID from the dequeue. The retrieve the NodeMut for it and work on the
// node's children.
while let Some((node_id, node)) = nodes.pop_front() {
let mut game_node: NodeMut<GameNode> = slab
.get_mut(node_id)
.expect("invalid node_id when retrieving nodes from the game");
// I have a node that is in the tree. Now run across all of its children, adding each one
// to the tree and pushing them into the deque along with their IDs.
for child in node.next {
let slab_child = game_node
.append(GameNode::try_from(child.clone()).map_err(GameError::InvalidGameNode)?);
nodes.push_back((slab_child.node_id(), child));
}
}
Ok(GameTree(slab))
}
#[derive(Default)]
pub struct TreeIter<'a> {
queue: VecDeque<NodeRef<'a, &'a GameNode>>,
}
/*
impl<'a> Default for TreeIter<'a> {
fn default() -> Self {
TreeIter {
queue: VecDeque::default(),
}
}
}
*/
impl<'a> Iterator for TreeIter<'a> {
type Item = &'a GameNode;
fn next(&mut self) -> Option<Self::Item> {
let retval = self.queue.pop_front();
if let Some(ref retval) = retval {
retval
.children()
.for_each(|node| self.queue.push_back(node));
}
retval.map(|rv| *rv.data())
}
}
pub struct GameTree(Tree<GameNode>);
impl Default for GameTree {
fn default() -> Self {
Self(Tree::new())
}
}
impl Clone for GameTree {
fn clone(&self) -> Self {
match self.0.root() {
None => Self(Tree::new()),
Some(source_root_node) => {
let mut dest = Tree::new();
let dest_root_id = dest.set_root(source_root_node.data().clone());
// In order to add a node to the new tree, I need to know the ID of the parent in
// the source tree and the ID of the parent in the destination tree. So I want a
// lookup table that maps source IDs to destination IDs. But is that sufficient?
// Perhaps I can just keep a mapping from a source noderef to a destination ID.
// I don't think I can keep more than one mutable destination node.
let mut mapping: HashMap<NodeId, NodeId> = HashMap::new();
mapping.insert(source_root_node.node_id(), dest_root_id);
for source_node in source_root_node.traverse_level_order() {
match source_node.parent() {
None => {}
Some(parent) => {
let source_node_parent_id = parent.node_id();
let target_node_parent_id = mapping.get(&source_node_parent_id).expect("node should have been added to the source to dest mapping when being cloned");
let mut parent = dest.get_mut(*target_node_parent_id).expect(
"destination parent node to exist before reaching potential children",
);
let dest_id = parent.append(source_node.data().clone()).node_id();
mapping.insert(source_node.node_id(), dest_id);
}
}
}
Self(dest)
}
}
}
}
impl Debug for GameTree {
fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
self.write_formatted(f)
}
}
impl Deref for GameTree {
type Target = Tree<GameNode>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for GameTree {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl PartialEq for GameTree {
fn eq(&self, other: &Self) -> bool {
// Get pre-order iterators over both trees, zip them, and ensure that the data contents are
// the same between them
let left_root = self.root();
let right_root = other.root();
match (left_root, right_root) {
(Some(left_root), Some(right_root)) => {
for (left_node, right_node) in std::iter::zip(
left_root.traverse_pre_order(),
right_root.traverse_pre_order(),
) {
if left_node.data() != right_node.data() {
return false;
}
}
}
(None, None) => return true,
_ => return false,
}
true
}
}
pub struct MainlineIter<'a> {
next: Option<NodeRef<'a, GameNode>>,
tree: &'a Tree<GameNode>,
}
impl<'a> Iterator for MainlineIter<'a> {
type Item = &'a GameNode;
fn next(&mut self) -> Option<Self::Item> {
if let Some(next) = self.next.take() {
let ret = self.tree.get(next.node_id())?;
self.next = next
.first_child()
.and_then(|child| self.tree.get(child.node_id()));
Some(ret.data())
} else {
None
}
}
}
#[derive(Clone, Debug, PartialEq, Deserialize, Serialize)]
pub enum GameNode {
MoveNode(MoveNode),
SetupNode(SetupNode),
}
impl fmt::Display for GameNode {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
match self {
GameNode::MoveNode(_) => write!(f, "MoveNode"),
GameNode::SetupNode(_) => write!(f, "SetupNode"),
}
pub trait Node {
/// Provide a pre-order traversal of all of the nodes in the game tree.
fn nodes<'a>(&'a self) -> Vec<&'a GameNode> {
self.children()
.iter()
.flat_map(|node| {
let mut children = node.nodes();
let mut v = vec![*node];
v.append(&mut children);
v
})
.collect::<Vec<&'a GameNode>>()
}
fn children(&self) -> Vec<&GameNode>;
fn add_child(&mut self, node: GameNode) -> &mut GameNode;
}
impl GameNode {
@ -444,20 +279,70 @@ impl GameNode {
}
}
impl TryFrom<parser::Node> for GameNode {
impl Node for GameNode {
fn children(&self) -> Vec<&GameNode> {
match self {
GameNode::MoveNode(node) => node.children(),
GameNode::SetupNode(node) => node.children(),
}
}
fn nodes(&self) -> Vec<&GameNode> {
match self {
GameNode::MoveNode(node) => node.nodes(),
GameNode::SetupNode(node) => node.nodes(),
}
}
fn add_child(&mut self, new_node: GameNode) -> &mut GameNode {
match self {
GameNode::MoveNode(node) => node.add_child(new_node),
GameNode::SetupNode(node) => node.add_child(new_node),
}
}
}
impl TryFrom<&parser::Node> for GameNode {
type Error = GameNodeError;
fn try_from(n: parser::Node) -> Result<Self, Self::Error> {
let move_node = MoveNode::try_from(n.clone());
let setup_node = SetupNode::try_from(n.clone());
fn try_from(n: &parser::Node) -> Result<Self, Self::Error> {
// I originally wrote this recursively. However, on an ordinary game of a couple hundred
// moves, that meant that I was recursing 500 functions, and that exceeded the stack limit.
// So, instead, I need to unroll everything to non-recursive form.
//
// So, I can treat each branch of the tree as a single line. Iterate over that line. I can
// only use the MoveNode::try_from and SetupNode::try_from if those functions don't
// recurse. Instead, I'm going to process just that node, then return to here and process
// the children.
let move_node = MoveNode::try_from(n);
let setup_node = SetupNode::try_from(n);
match (move_node, setup_node) {
(Ok(node), _) => Ok(Self::MoveNode(node)),
(Err(_), Ok(node)) => Ok(Self::SetupNode(node)),
(Err(move_err), Err(setup_err)) => {
Err(Self::Error::UnsupportedGameNode(move_err, setup_err, n))
// I'm much too tired when writing this. I'm still recursing, but I did cut the number of
// recursions in half. This helps, but it still doesn't guarantee that I'm going to be able
// to parse all possible games. So, still, treat each branch of the game as a single line.
// Iterate over that line, don't recurse. Create bookmarks at each branch point, and then
// come back to each one.
let children = n
.next
.iter()
.map(GameNode::try_from)
.collect::<Result<Vec<Self>, Self::Error>>()?;
let node = match (move_node, setup_node) {
(Ok(mut node), _) => {
node.children = children;
Ok(Self::MoveNode(node))
}
}
(Err(_), Ok(mut node)) => {
node.children = children;
Ok(Self::SetupNode(node))
}
(Err(move_err), Err(setup_err)) => {
Err(Self::Error::UnsupportedGameNode(move_err, setup_err))
}
}?;
Ok(node)
}
}
@ -466,6 +351,7 @@ pub struct MoveNode {
pub id: Uuid,
pub color: Color,
pub mv: Move,
pub children: Vec<GameNode>,
pub time_left: Option<Duration>,
pub moves_left: Option<usize>,
@ -483,6 +369,7 @@ impl MoveNode {
id: Uuid::new_v4(),
color,
mv,
children: Vec::new(),
time_left: None,
moves_left: None,
@ -496,10 +383,21 @@ impl MoveNode {
}
}
impl TryFrom<parser::Node> for MoveNode {
impl Node for MoveNode {
fn children<'a>(&'a self) -> Vec<&'a GameNode> {
self.children.iter().collect::<Vec<&'a GameNode>>()
}
fn add_child(&mut self, node: GameNode) -> &mut GameNode {
self.children.push(node);
self.children.last_mut().unwrap()
}
}
impl TryFrom<&parser::Node> for MoveNode {
type Error = MoveNodeError;
fn try_from(n: parser::Node) -> Result<Self, Self::Error> {
fn try_from(n: &parser::Node) -> Result<Self, Self::Error> {
let s = match n.mv() {
Some((color, mv)) => {
let mut s = Self::new(color, mv);
@ -562,6 +460,7 @@ pub struct SetupNode {
id: Uuid,
pub positions: Vec<parser::SetupInstr>,
pub children: Vec<GameNode>,
}
impl SetupNode {
@ -581,14 +480,26 @@ impl SetupNode {
Ok(Self {
id: Uuid::new_v4(),
positions,
children: Vec::new(),
})
}
}
impl TryFrom<parser::Node> for SetupNode {
impl Node for SetupNode {
fn children<'a>(&'a self) -> Vec<&'a GameNode> {
self.children.iter().collect::<Vec<&'a GameNode>>()
}
#[allow(dead_code)]
fn add_child(&mut self, _node: GameNode) -> &mut GameNode {
unimplemented!()
}
}
impl TryFrom<&parser::Node> for SetupNode {
type Error = SetupNodeError;
fn try_from(n: parser::Node) -> Result<Self, Self::Error> {
fn try_from(n: &parser::Node) -> Result<Self, Self::Error> {
match n.setup() {
Some(elements) => Self::new(elements),
None => Err(Self::Error::NotASetupNode),
@ -596,7 +507,6 @@ impl TryFrom<parser::Node> for SetupNode {
}
}
/*
#[allow(dead_code)]
pub fn path_to_node(node: &GameNode, id: Uuid) -> Vec<&GameNode> {
if node.id() == id {
@ -613,7 +523,6 @@ pub fn path_to_node(node: &GameNode, id: Uuid) -> Vec<&GameNode> {
Vec::new()
}
*/
#[cfg(test)]
mod test {
@ -646,19 +555,15 @@ mod test {
Player::default(),
);
/*
let first_move = MoveNode::new(Color::Black, Move::Move("dd".to_owned()));
let first_ = game.add_child(GameNode::MoveNode(first_move.clone()));
let second_move = MoveNode::new(Color::White, Move::Move("qq".to_owned()));
first_.add_child(GameNode::MoveNode(second_move.clone()));
*/
/*
let nodes = game.nodes();
assert_eq!(nodes.len(), 2);
assert_eq!(nodes[0].id(), first_move.id);
assert_eq!(nodes[1].id(), second_move.id);
*/
}
#[ignore]
@ -683,7 +588,7 @@ mod test {
],
next: vec![],
};
assert_matches!(GameNode::try_from(n), Ok(GameNode::MoveNode(_)));
assert_matches!(GameNode::try_from(&n), Ok(GameNode::MoveNode(_)));
}
}
@ -725,10 +630,10 @@ mod move_node_tests {
],
next: vec![],
};
assert_matches!(MoveNode::try_from(n), Ok(node) => {
assert_matches!(MoveNode::try_from(&n), Ok(node) => {
assert_eq!(node.color, Color::White);
assert_eq!(node.mv, Move::Move("dp".to_owned()));
// assert_eq!(node.children, vec![]);
assert_eq!(node.children, vec![]);
assert_eq!(node.time_left, Some(Duration::from_secs(176)));
assert_eq!(node.comments, Some("Comments in the game".to_owned()));
});
@ -748,7 +653,7 @@ mod move_node_tests {
next: vec![],
};
assert_matches!(
MoveNode::try_from(n),
MoveNode::try_from(&n),
Err(MoveNodeError::IncompatibleProperty(_))
);
}
@ -798,7 +703,7 @@ mod path_test {
let (_, games) = parse_collection::<nom::error::VerboseError<&str>>(text).unwrap();
let games = games
.into_iter()
.map(|game| GameRecord::try_from(game).expect("game to parse"))
.map(|game| GameRecord::try_from(&game).expect("game to parse"))
.collect::<Vec<GameRecord>>();
f(games);
}
@ -817,10 +722,7 @@ mod path_test {
|games| {
let game = &games[0];
let moves = game
.mainline()
.expect("there should be a mainline in this file")
.collect::<Vec<&GameNode>>();
let moves = game.mainline();
assert_matches!(moves[0], GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::Black);
assert_eq!(node.mv, Move::Move("pp".to_owned()));
@ -842,10 +744,7 @@ mod path_test {
with_file(std::path::Path::new("test_data/branch_test.sgf"), |games| {
let game = &games[0];
let moves = game
.mainline()
.expect("there should be a mainline in this file")
.collect::<Vec<&GameNode>>();
let moves = game.mainline();
assert_matches!(moves[1], GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::White);
assert_eq!(node.mv, Move::Move("dd".to_owned()));
@ -892,7 +791,7 @@ mod file_test {
let (_, games) = parse_collection::<nom::error::VerboseError<&str>>(text).unwrap();
let games = games
.into_iter()
.map(|game| GameRecord::try_from(game).expect("game to parse"))
.map(|game| GameRecord::try_from(&game).expect("game to parse"))
.collect::<Vec<GameRecord>>();
f(games);
}
@ -976,7 +875,6 @@ mod file_test {
}
*/
/*
let children = game.children();
let node = children.first().unwrap();
assert_matches!(node, GameNode::MoveNode(node) => {
@ -994,7 +892,6 @@ mod file_test {
assert_eq!(node.time_left, Some(Duration::from_secs(1765)));
assert_eq!(node.comments, None);
});
*/
/*
let node = node.next().unwrap();
let expected_properties = vec![
@ -1014,39 +911,4 @@ mod file_test {
},
);
}
#[test]
fn it_can_load_a_file_with_multiple_roots() {
with_file(std::path::Path::new("test_data/multi-tree.sgf"), |games| {
assert_eq!(games.len(), 1);
let game = &games[0];
assert_eq!(game.game_type, GameType::Go);
assert_eq!(
game.board_size,
Size {
width: 19,
height: 19
}
);
assert_eq!(game.trees.len(), 2);
assert_matches!(game.trees[0].root().unwrap().data(), GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::Black);
assert_eq!(node.mv, Move::Move("pd".to_owned()));
});
assert_matches!(game.trees[1].root().unwrap().data(), GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::Black);
assert_eq!(node.mv, Move::Move("pc".to_owned()));
});
});
}
#[test]
fn it_can_copy_a_game_record() {
with_file(std::path::Path::new("test_data/multi-tree.sgf"), |games| {
let dest = games.clone();
assert_eq!(games.len(), dest.len());
assert_eq!(games[0], dest[0]);
});
}
}

View File

@ -1,7 +1,7 @@
mod date;
mod game;
pub use game::{GameNode, GameRecord, GameTree, MoveNode, Player};
pub use game::{GameNode, GameRecord, MoveNode, Player};
mod parser;
pub use parser::{parse_collection, Move};
@ -22,7 +22,6 @@ pub enum Error {
InvalidSgf(VerboseNomError),
}
#[allow(dead_code)]
#[derive(Debug)]
pub struct VerboseNomError(nom::error::VerboseError<String>);
@ -74,7 +73,7 @@ pub fn parse_sgf(input: &str) -> Result<Vec<Result<GameRecord, game::GameError>>
let (_, games) = parse_collection::<nom::error::VerboseError<&str>>(input)?;
let games = games
.into_iter()
.map(GameRecord::try_from)
.map(|game| GameRecord::try_from(&game))
.collect::<Vec<Result<GameRecord, game::GameError>>>();
Ok(games)

View File

@ -56,7 +56,6 @@ pub enum Error {
InvalidSgf(VerboseNomError),
}
#[allow(dead_code)]
#[derive(Debug)]
pub struct VerboseNomError(nom::error::VerboseError<String>);

View File

@ -1 +0,0 @@
(;GM[1]FF[4]CA[UTF-8]AP[Sabaki:0.52.2]KM[7.5]SZ[19]DT[2024-04-19](;B[pd](;W[qc];B[qd];W[pc];B[oc];W[ob];B[nc];W[nb];B[mc];W[rd];B[re];W[rc];B[qf])(;W[qf];B[nc];W[rd];B[qc];W[pi]))(;B[pc];W[qe];B[oe];W[pg];B[ld];W[qj]))

View File

@ -9,10 +9,6 @@ use std::{
rc::Rc,
};
// I need to take what I learned about linked lists and about the other Tree data structure, and
// apply it here with arena allocation.
//
// Also, smarter node allocation and pointer handling in order to avoid clones.
#[derive(Clone, Debug, Default)]
pub enum Tree<T> {
#[default]
@ -59,16 +55,6 @@ impl<T> Tree<T> {
None
}
// Do a depth-first-search in order to get the path to a node. Start with a naive recursive
// implementation, then switch to a stack-based implementation in order to avoid exceeding the
// stack.
pub fn path_to<F>(&self, f: F) -> Vec<Node<T>>
where
F: FnOnce(&T) -> bool + Copy,
{
unimplemented!()
}
/// Convert each node of a tree from type T to type U
pub fn map<F, U>(&self, op: F) -> Tree<U>
where
@ -160,13 +146,6 @@ impl<T> Node<T> {
}
}
impl<T: PartialEq> PartialEq for Node<T> {
fn eq(&self, other: &Node<T>) -> bool {
self.0.borrow().value == other.0.borrow().value
&& self.0.borrow().children == other.0.borrow().children
}
}
#[cfg(test)]
mod tests {
use super::*;
@ -205,31 +184,4 @@ mod tests {
assert!(tree2.find_bfs(|val| *val == "16").is_some());
assert!(tree2.find_bfs(|val| *val == "17").is_some());
}
#[test]
fn path_to_on_empty_tree_returns_empty() {
let tree: Tree<&str> = Tree::default();
assert_eq!(tree.path_to(|val| *val == "i"), vec![]);
}
// A
// B G H
// C I
// D E F
#[test]
fn it_can_find_a_path_to_a_node() {
let (tree, a) = Tree::new("A");
let b = a.add_child_value("B");
let c = b.add_child_value("C");
let _d = c.add_child_value("D");
let _e = c.add_child_value("D");
let _f = c.add_child_value("D");
let _g = a.add_child_value("G");
let h = a.add_child_value("H");
let i = a.add_child_value("I");
assert_eq!(tree.path_to(|val| *val == "z"), vec![]);
assert_eq!(tree.path_to(|val| *val == "i"), vec![a, h, i]);
}
}