Compare commits

..

2 Commits

3 changed files with 111 additions and 31 deletions

View File

@ -5,7 +5,9 @@ use crate::{
use serde::{Deserialize, Serialize};
use slab_tree::{NodeId, NodeMut, NodeRef, Tree};
use std::{
collections::{HashSet, VecDeque},
collections::{HashMap, HashSet, VecDeque},
fmt::Debug,
ops::Deref,
time::Duration,
};
use uuid::Uuid;
@ -56,6 +58,7 @@ pub struct Player {
/// syntax issues, the result of the GameRecord is to have a fully-understood game. However, this
/// doesn't (yet?) go quite to the level of apply the game type (i.e., this is Go, Chess, Yinsh, or
/// whatever).
#[derive(Clone, Debug, PartialEq)]
pub struct GameRecord {
pub game_type: GameType,
@ -81,7 +84,7 @@ pub struct GameRecord {
pub overtime: Option<String>,
pub transcriber: Option<String>,
pub trees: Vec<Tree<GameNode>>,
pub trees: Vec<GameTree>,
}
impl GameRecord {
@ -134,7 +137,7 @@ impl GameRecord {
/// children.
pub fn mainline(&self) -> Option<impl Iterator<Item = &'_ GameNode>> {
println!("number of trees: {}", self.trees.len());
if self.trees.len() > 0 {
if !self.trees.is_empty(){
Some(MainlineIter {
next: self.trees[0].root(),
tree: &self.trees[0],
@ -233,15 +236,18 @@ impl TryFrom<parser::Tree> for GameRecord {
.map_err(GameError::InvalidGameNode)?;
*/
s.trees = tree.root.next.into_iter()
s.trees = tree
.root
.next
.into_iter()
.map(recursive_tree_to_slab_tree)
.collect::<Result<Vec<Tree<GameNode>>, GameError>>()?;
.collect::<Result<Vec<GameTree>, GameError>>()?;
Ok(s)
}
}
fn recursive_tree_to_slab_tree(node: parser::Node) -> Result<Tree<GameNode>, GameError> {
fn recursive_tree_to_slab_tree(node: parser::Node) -> Result<GameTree, GameError> {
let mut slab = Tree::new();
let mut nodes: VecDeque<(NodeId, parser::Node)> = VecDeque::new();
@ -269,13 +275,15 @@ fn recursive_tree_to_slab_tree(node: parser::Node) -> Result<Tree<GameNode>, Gam
}
}
Ok(slab)
Ok(GameTree(slab))
}
#[derive(Default)]
pub struct TreeIter<'a> {
queue: VecDeque<NodeRef<'a, &'a GameNode>>,
}
/*
impl<'a> Default for TreeIter<'a> {
fn default() -> Self {
TreeIter {
@ -283,6 +291,7 @@ impl<'a> Default for TreeIter<'a> {
}
}
}
*/
impl<'a> Iterator for TreeIter<'a> {
type Item = &'a GameNode;
@ -298,6 +307,86 @@ impl<'a> Iterator for TreeIter<'a> {
}
}
pub struct GameTree(Tree<GameNode>);
impl Clone for GameTree {
fn clone(&self) -> Self {
match self.0.root() {
None => Self(Tree::new()),
Some(source_root_node) => {
let mut dest = Tree::new();
let dest_root_id = dest.set_root(source_root_node.data().clone());
// In order to add a node to the new tree, I need to know the ID of the parent in
// the source tree and the ID of the parent in the destination tree. So I want a
// lookup table that maps source IDs to destination IDs. But is that sufficient?
// Perhaps I can just keep a mapping from a source noderef to a destination ID.
// I don't think I can keep more than one mutable destination node.
let mut mapping: HashMap<NodeId, NodeId> = HashMap::new();
mapping.insert(source_root_node.node_id(), dest_root_id);
for source_node in source_root_node.traverse_level_order() {
match source_node.parent() {
None => {}
Some(parent) => {
let source_node_parent_id = parent.node_id();
let target_node_parent_id = mapping.get(&source_node_parent_id).expect("node should have been added to the source to dest mapping when being cloned");
let mut parent = dest.get_mut(*target_node_parent_id).expect(
"destination parent node to exist before reaching potential children",
);
let dest_id = parent.append(source_node.data().clone()).node_id();
mapping.insert(source_node.node_id(), dest_id);
}
}
}
Self(dest)
}
}
}
}
impl Debug for GameTree {
fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
self.write_formatted(f)
}
}
impl Deref for GameTree {
type Target = Tree<GameNode>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl PartialEq for GameTree {
fn eq(&self, other: &Self) -> bool {
// Get pre-order iterators over both trees, zip them, and ensure that the data contents are
// the same between them
let left_root = self.root();
let right_root = other.root();
match (left_root, right_root) {
(Some(left_root), Some(right_root)) => {
for (left_node, right_node) in std::iter::zip(
left_root.traverse_pre_order(),
right_root.traverse_pre_order(),
) {
if left_node.data() != right_node.data() {
return false;
}
}
}
(None, None) => return true,
_ => return false,
}
true
}
}
pub struct MainlineIter<'a> {
next: Option<NodeRef<'a, GameNode>>,
tree: &'a Tree<GameNode>,
@ -338,33 +427,12 @@ impl TryFrom<parser::Node> for GameNode {
type Error = GameNodeError;
fn try_from(n: parser::Node) -> Result<Self, Self::Error> {
// I originally wrote this recursively. However, on an ordinary game of a couple hundred
// moves, that meant that I was recursing 500 functions, and that exceeded the stack limit.
// So, instead, I need to unroll everything to non-recursive form.
//
// So, I can treat each branch of the tree as a single line. Iterate over that line. I can
// only use the MoveNode::try_from and SetupNode::try_from if those functions don't
// recurse. Instead, I'm going to process just that node, then return to here and process
// the children.
let move_node = MoveNode::try_from(n.clone());
let setup_node = SetupNode::try_from(n.clone());
// I'm much too tired when writing this. I'm still recursing, but I did cut the number of
// recursions in half. This helps, but it still doesn't guarantee that I'm going to be able
// to parse all possible games. So, still, treat each branch of the game as a single line.
// Iterate over that line, don't recurse. Create bookmarks at each branch point, and then
// come back to each one.
/*
let children = n
.next
.iter()
.map(GameNode::try_from)
.collect::<Result<Vec<Self>, Self::Error>>()?;
*/
match (move_node, setup_node) {
(Ok(mut node), _) => Ok(Self::MoveNode(node)),
(Err(_), Ok(mut node)) => Ok(Self::SetupNode(node)),
(Ok(node), _) => Ok(Self::MoveNode(node)),
(Err(_), Ok(node)) => Ok(Self::SetupNode(node)),
(Err(move_err), Err(setup_err)) => {
Err(Self::Error::UnsupportedGameNode(move_err, setup_err, n))
}
@ -950,4 +1018,14 @@ mod file_test {
});
});
}
#[test]
fn it_can_copy_a_game_record() {
with_file(std::path::Path::new("test_data/multi-tree.sgf"), |games| {
let dest = games.clone();
assert_eq!(games.len(), dest.len());
assert_eq!(games[0], dest[0]);
});
}
}

View File

@ -22,6 +22,7 @@ pub enum Error {
InvalidSgf(VerboseNomError),
}
#[allow(dead_code)]
#[derive(Debug)]
pub struct VerboseNomError(nom::error::VerboseError<String>);
@ -73,7 +74,7 @@ pub fn parse_sgf(input: &str) -> Result<Vec<Result<GameRecord, game::GameError>>
let (_, games) = parse_collection::<nom::error::VerboseError<&str>>(input)?;
let games = games
.into_iter()
.map(|game| GameRecord::try_from(game))
.map(GameRecord::try_from)
.collect::<Vec<Result<GameRecord, game::GameError>>>();
Ok(games)

View File

@ -56,6 +56,7 @@ pub enum Error {
InvalidSgf(VerboseNomError),
}
#[allow(dead_code)]
#[derive(Debug)]
pub struct VerboseNomError(nom::error::VerboseError<String>);