Compare commits
No commits in common. "b982f2c1cc03dd4496f37fe107cb16f1f30c1010" and "9fbc6305005a45903619bbc828efbcd805bab0b0" have entirely different histories.
b982f2c1cc
...
9fbc630500
|
@ -3,9 +3,9 @@ use config::define_config;
|
|||
use config_derive::ConfigOption;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use sgf::GameNode;
|
||||
use std::{cell::RefCell, collections::VecDeque, fmt, path::PathBuf, time::Duration};
|
||||
use thiserror::Error;
|
||||
use uuid::Uuid;
|
||||
use std::{cell::RefCell, fmt, path::PathBuf, time::Duration};
|
||||
use thiserror::Error;
|
||||
|
||||
define_config! {
|
||||
LibraryPath(LibraryPath),
|
||||
|
@ -235,13 +235,13 @@ impl GameState {
|
|||
//
|
||||
// So, what is the maximum depth of the tree? Follow all paths and see how far I get in every case.
|
||||
// I could do this by just generating an intermediate tree and numbering each level.
|
||||
|
||||
pub struct Tree<T> {
|
||||
nodes: Vec<Node<T>>,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct Node<T> {
|
||||
pub id: usize,
|
||||
struct Node<T> {
|
||||
id: usize,
|
||||
node: T,
|
||||
parent: Option<usize>,
|
||||
depth: usize,
|
||||
|
@ -294,17 +294,6 @@ impl<T> Tree<T> {
|
|||
)
|
||||
}
|
||||
|
||||
// Since I know the width of a node, now I want to figure out its placement in the larger
|
||||
// scheme of things.
|
||||
//
|
||||
// One thought I have is that I could just develop a grid virtually and start placing nodes.
|
||||
// Whenever I notice a collision, I can just move the node over. But I'd like to see if I can
|
||||
// be a bit smarter than doing it as just a vec into which I place things, as though it's a
|
||||
// game board. So, given a game node, I want to figure out it's position along the X axis.
|
||||
//
|
||||
// Just having the node is greatly insufficient. I can get better results if I'm calculating
|
||||
// the position of its children.
|
||||
//
|
||||
// indent represents the indentation that should be applied to all children in this tree. It
|
||||
// amounts to the position of the parent node.
|
||||
pub fn position(&self, indent: usize, idx: usize) -> (usize, usize) {
|
||||
|
@ -321,22 +310,12 @@ impl<T> Tree<T> {
|
|||
println!("[{}] sibling width {}", idx, sibling_width);
|
||||
(node.depth, indent + sibling_width)
|
||||
}
|
||||
|
||||
|
||||
// Root nodes won't have a parent, so just put them in the first column
|
||||
None => (0, 0),
|
||||
}
|
||||
}
|
||||
|
||||
// Given a node, do a postorder traversal to figure out the width of the node based on all of
|
||||
// its children. This is equivalent to the widest of all of its children at all depths.
|
||||
//
|
||||
// There are some collapse rules that I could take into account here, but that I haven't
|
||||
// figured out yet. If two nodes are side by side, and one of them has some wide children but
|
||||
// the other has no children, then they are effectively the same width. The second node only
|
||||
// needs to be moved out if it has children that would overlap the children of the first node.
|
||||
//
|
||||
// My algorithm right now is likely to generate unnecessarily wide trees in a complex game
|
||||
// review.
|
||||
fn width(&self, id: usize) -> usize {
|
||||
println!("[{}] calculating width", id);
|
||||
let node = &self.nodes[id];
|
||||
|
@ -354,12 +333,6 @@ impl<T> Tree<T> {
|
|||
|
||||
width
|
||||
}
|
||||
|
||||
pub fn bfs_iter<'a>(&'a self) -> BFSIter<T> {
|
||||
let mut queue = VecDeque::new();
|
||||
queue.push_back(&self.nodes[0]);
|
||||
BFSIter { tree: self, queue }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a> From<&'a GameNode> for Tree<Uuid> {
|
||||
|
@ -392,30 +365,9 @@ impl<'a> From<&'a GameNode> for Tree<Uuid> {
|
|||
}
|
||||
}
|
||||
|
||||
pub struct BFSIter<'a, T> {
|
||||
tree: &'a Tree<T>,
|
||||
queue: VecDeque<&'a Node<T>>,
|
||||
}
|
||||
|
||||
impl<'a, T> Iterator for BFSIter<'a, T> {
|
||||
type Item = &'a Node<T>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let retval = self.queue.pop_front();
|
||||
if let Some(ref retval) = retval {
|
||||
retval
|
||||
.children
|
||||
.iter()
|
||||
.for_each(|idx| self.queue.push_back(&self.tree.nodes[*idx]));
|
||||
}
|
||||
retval
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
use cool_asserts::assert_matches;
|
||||
use sgf::{Move, MoveNode};
|
||||
|
||||
#[test]
|
||||
|
@ -546,45 +498,4 @@ mod test {
|
|||
assert_eq!(tree.position(0, 6), (1, 3));
|
||||
assert_eq!(tree.position(0, 7), (1, 4));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn breadth_first_iter() {
|
||||
let mut node_a = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
|
||||
let mut node_b = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
|
||||
let mut node_c = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
|
||||
let node_d = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
|
||||
let node_e = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
|
||||
let node_f = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
|
||||
let node_g = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
|
||||
let mut node_h = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
|
||||
let node_i = MoveNode::new(sgf::Color::Black, Move::Move("dp".to_owned()));
|
||||
|
||||
node_c.children.push(GameNode::MoveNode(node_d.clone()));
|
||||
node_c.children.push(GameNode::MoveNode(node_e.clone()));
|
||||
node_c.children.push(GameNode::MoveNode(node_f.clone()));
|
||||
|
||||
node_b.children.push(GameNode::MoveNode(node_c.clone()));
|
||||
|
||||
node_h.children.push(GameNode::MoveNode(node_i.clone()));
|
||||
|
||||
node_a.children.push(GameNode::MoveNode(node_b.clone()));
|
||||
node_a.children.push(GameNode::MoveNode(node_g.clone()));
|
||||
node_a.children.push(GameNode::MoveNode(node_h.clone()));
|
||||
|
||||
let game_tree = GameNode::MoveNode(node_a.clone());
|
||||
|
||||
let tree = Tree::from(&game_tree);
|
||||
|
||||
let mut iter = tree.bfs_iter();
|
||||
|
||||
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_a.id));
|
||||
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_b.id));
|
||||
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_g.id));
|
||||
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_h.id));
|
||||
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_c.id));
|
||||
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_i.id));
|
||||
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_d.id));
|
||||
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_e.id));
|
||||
assert_matches!(iter.next(), Some(Node { node: uuid, .. }) => assert_eq!(*uuid, node_f.id));
|
||||
}
|
||||
}
|
||||
|
|
|
@ -66,29 +66,8 @@ impl ReviewTree {
|
|||
s
|
||||
}
|
||||
|
||||
pub fn redraw(&self, ctx: &Context, _width: i32, _height: i32) {
|
||||
println!("redraw");
|
||||
let tree: &Option<Tree<Uuid>> = &self.imp().tree.borrow();
|
||||
match tree {
|
||||
Some(ref tree) => {
|
||||
for node in tree.bfs_iter() {
|
||||
// draw a circle given the coordinates of the nodes
|
||||
// I don't know the indent. How do I keep track of that? Do I track the position of
|
||||
// the parent? do I need to just make it more intrinsically a part of the position
|
||||
// code?
|
||||
ctx.set_source_rgb(0.7, 0.7, 0.7);
|
||||
let (row, column) = tree.position(0, node.id);
|
||||
println!("[{}] {} x {}", node.id, row, column);
|
||||
let y = (row as f64) * 20. + 10.;
|
||||
let x = (column as f64) * 20. + 10.;
|
||||
ctx.arc(x, y, 5., 0., 2. * std::f64::consts::PI);
|
||||
let _ = ctx.stroke();
|
||||
}
|
||||
}
|
||||
None => {
|
||||
// if there is no tree present, then there's nothing to draw!
|
||||
}
|
||||
}
|
||||
pub fn redraw(&self, _ctx: &Context, _width: i32, _height: i32) {
|
||||
// Implement the tree-drawing algorithm here
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -131,6 +110,43 @@ struct Tree {
|
|||
}
|
||||
*/
|
||||
|
||||
// Given a node, do a postorder traversal to figure out the width of the node based on all of its
|
||||
// children. This is equivalent to the widest of all of its children at all depths.
|
||||
//
|
||||
// There are some collapse rules that I could take into account here, but that I haven't figured
|
||||
// out yet. If two nodes are side by side, and one of them has some wide children but the other has
|
||||
// no children, then they are effectively the same width. The second node only needs to be moved
|
||||
// out if it has children that would overlap the children of the first node.
|
||||
//
|
||||
// My algorithm right now is likely to generate unnecessarily wide trees in a complex game review.
|
||||
#[allow(dead_code)]
|
||||
fn node_width(node: &GameNode) -> usize {
|
||||
let children: &Vec<GameNode> = match node {
|
||||
GameNode::MoveNode(mn) => &mn.children,
|
||||
GameNode::SetupNode(sn) => &sn.children,
|
||||
};
|
||||
|
||||
if children.is_empty() {
|
||||
return 1;
|
||||
}
|
||||
|
||||
// If there is more than one child, run node_width on each one and add them together.
|
||||
children
|
||||
.iter()
|
||||
.fold(0, |acc, child| acc + node_width(child))
|
||||
}
|
||||
|
||||
// Since I know the width of a node, now I want to figure out its placement in the larger scheme of
|
||||
// things.
|
||||
//
|
||||
// One thought I have is that I could just develop a grid virtually and start placing nodes.
|
||||
// Whenever I notice a collision, I can just move the node over. But I'd like to see if I can be a
|
||||
// bit smarter than doing it as just a vec into which I place things, as though it's a game board.
|
||||
// So, given a game node, I want to figure out it's position along the X axis.
|
||||
//
|
||||
// Just having the node is greatly insufficient. I can get better results if I'm calculating the
|
||||
// position of its children.
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
|
|
Loading…
Reference in New Issue