Create a small application that controls a dotstar from a raspberry pi pico #254
|
@ -1,14 +1,21 @@
|
|||
#![no_main]
|
||||
#![no_std]
|
||||
|
||||
use embedded_hal::delay::DelayNs;
|
||||
use embedded_hal::spi::SpiBus;
|
||||
/// This application demonstrates using a Raspberry Pi Pico to control an individual SK9822 module.
|
||||
/// Keep in mind that the Pico, though it accepts 5V for power, it runs on 3.3V logic. The GPIO
|
||||
/// pins will emit only 3.3 volts, and the SK9822 needs 5V logic. So, make sure that the GPIO pins
|
||||
/// run through a transistor or a logic level lhifter to go from 3.3V logic to 5V logic.
|
||||
use embedded_hal::{delay::DelayNs, spi::SpiBus};
|
||||
use panic_halt as _;
|
||||
use rp_pico::{
|
||||
entry,
|
||||
hal::{
|
||||
clocks::init_clocks_and_plls,
|
||||
fugit::RateExtU32,
|
||||
gpio::{
|
||||
bank0::{Gpio10, Gpio11},
|
||||
FunctionSpi, Pin, PullDown,
|
||||
},
|
||||
spi::Spi,
|
||||
Clock, Sio, Timer, Watchdog,
|
||||
},
|
||||
|
@ -21,15 +28,28 @@ const XOSC_CRYSTAL_FREQ: u32 = 12_000_000; // MHz, https://forums.raspberrypi.co
|
|||
|
||||
#[entry]
|
||||
unsafe fn main() -> ! {
|
||||
// rp_pico::pac::Peripherals is a reference to physical hardware defined on the Pico.
|
||||
let mut peripherals = pac::Peripherals::take().unwrap();
|
||||
|
||||
// SIO inidcates "Single Cycle IO". I don't know what this means, but it could mean that this
|
||||
// is a class of IO operations that can be run in a single clock cycle, such as switching a
|
||||
// GPIO pin on or off.
|
||||
let sio = Sio::new(peripherals.SIO);
|
||||
|
||||
// Many of the following systems require a watchdog. I do not know what this does, either, but
|
||||
// it may be some failsafe software that will reset operations if the watchdog detects a lack
|
||||
// of activity.
|
||||
let mut watchdog = Watchdog::new(peripherals.WATCHDOG);
|
||||
|
||||
// Here we grab the GPIO pins in bank 0.
|
||||
let pins = Pins::new(
|
||||
peripherals.IO_BANK0,
|
||||
peripherals.PADS_BANK0,
|
||||
sio.gpio_bank0,
|
||||
&mut peripherals.RESETS,
|
||||
);
|
||||
|
||||
// Initialize an abstraction of the clock system with a batch of standard hardware clocks.
|
||||
let clocks = init_clocks_and_plls(
|
||||
XOSC_CRYSTAL_FREQ,
|
||||
peripherals.XOSC,
|
||||
|
@ -42,15 +62,23 @@ unsafe fn main() -> ! {
|
|||
.ok()
|
||||
.unwrap();
|
||||
|
||||
// An abstraction for a timer which we can use to delay the code.
|
||||
let mut timer = Timer::new(peripherals.TIMER, &mut peripherals.RESETS, &clocks);
|
||||
|
||||
let spi_clk = pins.gpio10.into_function();
|
||||
let spi_sdo = pins.gpio11.into_function();
|
||||
let spi = Spi::<_, _, _, 8>::new(peripherals.SPI1, (spi_sdo, spi_clk));
|
||||
let mut spi = spi.init(
|
||||
// Grab the clock and data pins for SPI1. For Clock pins and for Data pins, there are only two
|
||||
// pins each on the Pico which can function for SPI1.
|
||||
let spi_clk: Pin<Gpio10, FunctionSpi, PullDown> = pins.gpio10.into_function();
|
||||
let spi_sdo: Pin<Gpio11, FunctionSpi, PullDown> = pins.gpio11.into_function();
|
||||
|
||||
// Now, create the SPI function abstraction for SPI1 with spi_clk and spi_sdo.
|
||||
let mut spi = Spi::<_, _, _, 8>::new(peripherals.SPI1, (spi_sdo, spi_clk)).init(
|
||||
&mut peripherals.RESETS,
|
||||
// The SPI system uses the peripheral clock
|
||||
clocks.peripheral_clock.freq(),
|
||||
// Transmit data at a rate of 1Mbit.
|
||||
1_u32.MHz(),
|
||||
// Run with SPI Mode 1. This means that the clock line should start high and that data will
|
||||
// be sampled starting at the first falling edge.
|
||||
embedded_hal::spi::MODE_1,
|
||||
);
|
||||
|
||||
|
@ -59,13 +87,27 @@ unsafe fn main() -> ! {
|
|||
// 4 for the end frame
|
||||
// = 20 bytes
|
||||
let mut lights: [u8; 12] = [0; 12];
|
||||
// We just skip the first four bytes, because the start frame is four bytes of 0.
|
||||
|
||||
// Set the first byte of the one and only lamp. The first byte follows the pattern of three 1
|
||||
// bits followed by five additional bits that indicate an overall brightness level of the
|
||||
// pixel. The datasheet for the SK9822 doesn't specify the exact effect, but it does mean that
|
||||
// the higher this number is, the brighter 255 means for an given LED in the array. 1 is the
|
||||
// lowest brightness that emits light, and 31 is the highest supported brightness.
|
||||
lights[4] = 0xe0 + 1;
|
||||
// Set the Blue light of the dotstar to 255, assuming the dotstar frame format is RBG. Note
|
||||
// that the standard SK9822 datasheed indicates that the format is BGR. Your mileage may vary.
|
||||
lights[6] = 255;
|
||||
|
||||
// The end frame is four bytes of 255.
|
||||
lights[8] = 0xff;
|
||||
lights[9] = 0xff;
|
||||
lights[10] = 0xff;
|
||||
lights[11] = 0xff;
|
||||
|
||||
lights[4] = 0xe0 + 1;
|
||||
|
||||
// The rest of this is just a stock pulsating animation which is slightly brightening and
|
||||
// dimming the *blue* LED (on my set of dotstars).
|
||||
let mut brightness = 1;
|
||||
let mut step = 1;
|
||||
loop {
|
||||
|
@ -75,8 +117,6 @@ unsafe fn main() -> ! {
|
|||
step = 1;
|
||||
};
|
||||
lights[5] = brightness as u8;
|
||||
lights[6] = 255;
|
||||
// lights[7] = brightness as u8;
|
||||
brightness = brightness + step;
|
||||
|
||||
let _ = spi.write(lights.as_slice());
|
||||
|
|
Loading…
Reference in New Issue