monorepo/sgf/src/game.rs

1057 lines
34 KiB
Rust

use crate::{
parser::{self, Annotation, Evaluation, Move, SetupInstr, Size, UnknownProperty},
Color, Date, GameResult, GameType,
};
use nary_tree::{NodeId, NodeMut, NodeRef, Tree};
use serde::{Deserialize, Serialize};
use std::{
collections::{HashMap, HashSet, VecDeque},
fmt,
fmt::Debug,
ops::{Deref, DerefMut},
time::Duration,
};
use uuid::Uuid;
#[derive(Clone, Debug, PartialEq)]
pub enum GameError {
InvalidGame,
RequiredPropertiesMissing,
InvalidGameNode(GameNodeError),
}
#[derive(Clone, Debug, PartialEq)]
pub enum MoveNodeError {
IncompatibleProperty(parser::Property),
ConflictingProperty,
NotAMoveNode,
ChildError(Box<GameNodeError>),
}
#[derive(Clone, Debug, PartialEq)]
pub enum SetupNodeError {
IncompatibleProperty(parser::Property),
ConflictingProperty,
ConflictingPosition,
NotASetupNode,
ChildError(Box<GameNodeError>),
}
#[derive(Clone, Debug, PartialEq)]
pub enum GameNodeError {
UnsupportedGameNode(MoveNodeError, SetupNodeError, parser::Node),
ConflictingProperty,
ConflictingPosition,
}
#[derive(Clone, Debug, PartialEq, Default, Deserialize, Serialize)]
pub struct Player {
pub name: Option<String>,
pub rank: Option<String>,
pub team: Option<String>,
}
/// This represents the more semantic version of the game parser. Where the `parser` crate pulls
/// out a raw set of nodes, this structure is guaranteed to be a well-formed game. Getting to this
/// level, the interpreter will reject any games that have setup properties and move properties
/// mixed in a single node. If there are other semantic problems, the interpreter will reject
/// those, as well. Where the function of the parser is to understand and correct fundamental
/// syntax issues, the result of the GameRecord is to have a fully-understood game. However, this
/// doesn't (yet?) go quite to the level of apply the game type (i.e., this is Go, Chess, Yinsh, or
/// whatever).
#[derive(Clone, Debug, PartialEq)]
pub struct GameRecord {
pub game_type: GameType,
// TODO: board size is not necessary in all games. Hive has no defined board size.
pub board_size: Size,
pub black_player: Player,
pub white_player: Player,
pub app: Option<String>,
pub annotator: Option<String>,
pub copyright: Option<String>,
pub dates: Vec<Date>,
pub event: Option<String>,
pub game_name: Option<String>,
pub extra_info: Option<String>,
pub opening_info: Option<String>,
pub location: Option<String>,
pub result: Option<GameResult>,
pub round: Option<String>,
pub rules: Option<String>,
pub source: Option<String>,
pub time_limit: Option<Duration>,
pub overtime: Option<String>,
pub transcriber: Option<String>,
pub trees: Vec<GameTree>,
}
impl GameRecord {
pub fn new(
game_type: GameType,
board_size: Size,
black_player: Player,
white_player: Player,
) -> Self {
Self {
game_type,
board_size,
black_player,
white_player,
app: None,
annotator: None,
copyright: None,
dates: vec![],
event: None,
game_name: None,
extra_info: None,
opening_info: None,
location: None,
result: None,
round: None,
rules: None,
source: None,
time_limit: None,
overtime: None,
transcriber: None,
trees: vec![],
}
}
pub fn nodes(&self) -> Vec<&GameNode> {
self.iter().collect()
}
pub fn iter(&self) -> impl Iterator<Item = &'_ GameNode> {
self.trees
.iter()
.flat_map(|tree| tree.root().unwrap().traverse_pre_order())
.map(|nr| nr.data())
}
/// Generate a list of moves which constitute the main line of the game. This is the game as it
/// was actually played out, and by convention consists of the first node in each list of
/// children.
pub fn mainline(&self) -> Option<impl Iterator<Item = NodeRef<'_, GameNode>>> {
if !self.trees.is_empty() {
Some(MainlineIter {
next: self.trees[0].root(),
tree: &self.trees[0],
})
} else {
None
}
}
}
impl TryFrom<parser::Tree> for GameRecord {
type Error = GameError;
fn try_from(tree: parser::Tree) -> Result<Self, Self::Error> {
let mut ty = None;
let mut size = None;
let mut black_player = Player {
name: None,
rank: None,
team: None,
};
let mut white_player = Player {
name: None,
rank: None,
team: None,
};
for prop in tree.root.properties.iter() {
match prop {
parser::Property::GameType(ty_) => ty = Some(ty_.clone()),
parser::Property::BoardSize(size_) => size = Some(size_.clone()),
parser::Property::BlackPlayer(name) => {
black_player.name = Some(name.clone());
}
parser::Property::WhitePlayer(name) => {
white_player.name = Some(name.clone());
}
parser::Property::BlackRank(rank) => {
black_player.rank = Some(rank.clone());
}
parser::Property::WhiteRank(rank) => {
white_player.rank = Some(rank.clone());
}
parser::Property::BlackTeam(team) => {
black_player.team = Some(team.clone());
}
parser::Property::WhiteTeam(team) => {
white_player.team = Some(team.clone());
}
_ => {}
}
}
let mut s = match (ty, size) {
(Some(ty), Some(size)) => Ok(Self::new(ty, size, black_player, white_player)),
_ => Err(Self::Error::RequiredPropertiesMissing),
}?;
for prop in tree.root.properties.iter() {
match prop {
parser::Property::GameType(_)
| parser::Property::BoardSize(_)
| parser::Property::BlackPlayer(_)
| parser::Property::WhitePlayer(_)
| parser::Property::BlackRank(_)
| parser::Property::WhiteRank(_)
| parser::Property::BlackTeam(_)
| parser::Property::WhiteTeam(_) => {}
parser::Property::Application(v) => s.app = Some(v.clone()),
parser::Property::Annotator(v) => s.annotator = Some(v.clone()),
parser::Property::Copyright(v) => s.copyright = Some(v.clone()),
parser::Property::EventDates(v) => s.dates = v.clone(),
parser::Property::EventName(v) => s.event = Some(v.clone()),
parser::Property::GameName(v) => s.game_name = Some(v.clone()),
parser::Property::ExtraGameInformation(v) => s.extra_info = Some(v.clone()),
parser::Property::GameOpening(v) => s.opening_info = Some(v.clone()),
parser::Property::GameLocation(v) => s.location = Some(v.clone()),
parser::Property::Result(v) => s.result = Some(v.clone()),
parser::Property::Round(v) => s.round = Some(v.clone()),
parser::Property::Ruleset(v) => s.rules = Some(v.clone()),
parser::Property::Source(v) => s.source = Some(v.clone()),
parser::Property::TimeLimit(v) => s.time_limit = Some(*v),
parser::Property::Overtime(v) => s.overtime = Some(v.clone()),
// parser::Property::Data(v) => s.transcriber = Some(v.clone()),
_ => {}
}
}
/*
s.children = tree
.root
.next
.iter()
.map(GameNode::try_from)
.collect::<Result<Vec<GameNode>, GameNodeError>>()
.map_err(GameError::InvalidGameNode)?;
*/
s.trees = tree
.root
.next
.into_iter()
.map(recursive_tree_to_slab_tree)
.collect::<Result<Vec<GameTree>, GameError>>()?;
Ok(s)
}
}
fn recursive_tree_to_slab_tree(node: parser::Node) -> Result<GameTree, GameError> {
let mut slab = Tree::new();
let mut nodes: VecDeque<(NodeId, parser::Node)> = VecDeque::new();
let root_id =
slab.set_root(GameNode::try_from(node.clone()).map_err(GameError::InvalidGameNode)?);
nodes.push_back((root_id, node));
// I need to keep track of the current parent, and I need to keep on digging deeper into the
// tree. Given that I have the root, I can then easily find out all of the children.
//
// So, maybe I take the list of children. Assign each one of them to a place in the slab tree.
// Then push the child *and* its ID into a dequeue. So long as the dequeue is not empty, I want
// to pop a node and its ID from the dequeue. The retrieve the NodeMut for it and work on the
// node's children.
while let Some((node_id, node)) = nodes.pop_front() {
let mut game_node: NodeMut<GameNode> = slab
.get_mut(node_id)
.expect("invalid node_id when retrieving nodes from the game");
// I have a node that is in the tree. Now run across all of its children, adding each one
// to the tree and pushing them into the deque along with their IDs.
for child in node.next {
let slab_child = game_node
.append(GameNode::try_from(child.clone()).map_err(GameError::InvalidGameNode)?);
nodes.push_back((slab_child.node_id(), child));
}
}
Ok(GameTree(slab))
}
#[derive(Default)]
pub struct TreeIter<'a> {
queue: VecDeque<NodeRef<'a, &'a GameNode>>,
}
/*
impl<'a> Default for TreeIter<'a> {
fn default() -> Self {
TreeIter {
queue: VecDeque::default(),
}
}
}
*/
impl<'a> Iterator for TreeIter<'a> {
type Item = &'a GameNode;
fn next(&mut self) -> Option<Self::Item> {
let retval = self.queue.pop_front();
if let Some(ref retval) = retval {
retval
.children()
.for_each(|node| self.queue.push_back(node));
}
retval.map(|rv| *rv.data())
}
}
pub struct GameTree(Tree<GameNode>);
impl Default for GameTree {
fn default() -> Self {
Self(Tree::new())
}
}
impl Clone for GameTree {
fn clone(&self) -> Self {
match self.0.root() {
None => Self(Tree::new()),
Some(source_root_node) => {
let mut dest = Tree::new();
let dest_root_id = dest.set_root(source_root_node.data().clone());
// In order to add a node to the new tree, I need to know the ID of the parent in
// the source tree and the ID of the parent in the destination tree. So I want a
// lookup table that maps source IDs to destination IDs. But is that sufficient?
// Perhaps I can just keep a mapping from a source noderef to a destination ID.
// I don't think I can keep more than one mutable destination node.
let mut mapping: HashMap<NodeId, NodeId> = HashMap::new();
mapping.insert(source_root_node.node_id(), dest_root_id);
for source_node in source_root_node.traverse_level_order() {
match source_node.parent() {
None => {}
Some(parent) => {
let source_node_parent_id = parent.node_id();
let target_node_parent_id = mapping.get(&source_node_parent_id).expect("node should have been added to the source to dest mapping when being cloned");
let mut parent = dest.get_mut(*target_node_parent_id).expect(
"destination parent node to exist before reaching potential children",
);
let dest_id = parent.append(source_node.data().clone()).node_id();
mapping.insert(source_node.node_id(), dest_id);
}
}
}
Self(dest)
}
}
}
}
impl Debug for GameTree {
fn fmt(&self, f: &mut std::fmt::Formatter) -> Result<(), std::fmt::Error> {
self.write_formatted(f)
}
}
impl Deref for GameTree {
type Target = Tree<GameNode>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for GameTree {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
impl PartialEq for GameTree {
fn eq(&self, other: &Self) -> bool {
// Get pre-order iterators over both trees, zip them, and ensure that the data contents are
// the same between them
let left_root = self.root();
let right_root = other.root();
match (left_root, right_root) {
(Some(left_root), Some(right_root)) => {
for (left_node, right_node) in std::iter::zip(
left_root.traverse_pre_order(),
right_root.traverse_pre_order(),
) {
if left_node.data() != right_node.data() {
return false;
}
}
}
(None, None) => return true,
_ => return false,
}
true
}
}
pub struct MainlineIter<'a> {
next: Option<NodeRef<'a, GameNode>>,
tree: &'a Tree<GameNode>,
}
impl<'a> Iterator for MainlineIter<'a> {
type Item = NodeRef<'a, GameNode>;
fn next(&mut self) -> Option<Self::Item> {
if let Some(next) = self.next.take() {
let ret = self.tree.get(next.node_id())?;
self.next = next
.first_child()
.and_then(|child| self.tree.get(child.node_id()));
Some(ret)
} else {
None
}
}
}
#[derive(Clone, Debug, PartialEq, Deserialize, Serialize)]
pub enum GameNode {
MoveNode(MoveNode),
SetupNode(SetupNode),
}
impl fmt::Display for GameNode {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
match self {
GameNode::MoveNode(_) => write!(f, "MoveNode"),
GameNode::SetupNode(_) => write!(f, "SetupNode"),
}
}
}
impl GameNode {
pub fn id(&self) -> Uuid {
match self {
GameNode::MoveNode(node) => node.id,
GameNode::SetupNode(node) => node.id,
}
}
}
impl TryFrom<parser::Node> for GameNode {
type Error = GameNodeError;
fn try_from(n: parser::Node) -> Result<Self, Self::Error> {
let move_node = MoveNode::try_from(n.clone());
let setup_node = SetupNode::try_from(n.clone());
match (move_node, setup_node) {
(Ok(node), _) => Ok(Self::MoveNode(node)),
(Err(_), Ok(node)) => Ok(Self::SetupNode(node)),
(Err(move_err), Err(setup_err)) => {
Err(Self::Error::UnsupportedGameNode(move_err, setup_err, n))
}
}
}
}
#[derive(Clone, Debug, PartialEq, Deserialize, Serialize)]
pub struct MoveNode {
pub id: Uuid,
pub color: Color,
pub mv: Move,
pub time_left: Option<Duration>,
pub moves_left: Option<usize>,
pub name: Option<String>,
pub evaluation: Option<Evaluation>,
pub value: Option<f64>,
pub comments: Option<String>,
pub annotation: Option<Annotation>,
pub unknown_props: Vec<(String, String)>,
}
impl MoveNode {
pub fn new(color: Color, mv: Move) -> Self {
Self {
id: Uuid::new_v4(),
color,
mv,
time_left: None,
moves_left: None,
name: None,
evaluation: None,
value: None,
comments: None,
annotation: None,
unknown_props: vec![],
}
}
}
impl TryFrom<parser::Node> for MoveNode {
type Error = MoveNodeError;
fn try_from(n: parser::Node) -> Result<Self, Self::Error> {
let s = match n.mv() {
Some((color, mv)) => {
let mut s = Self::new(color, mv);
for prop in n.properties.iter() {
match prop {
parser::Property::Move((color, mv)) => {
if s.color != *color || s.mv != *mv {
return Err(Self::Error::ConflictingProperty);
}
}
parser::Property::TimeLeft((color, duration)) => {
if s.color != *color {
return Err(Self::Error::ConflictingProperty);
}
if s.time_left.is_some() {
return Err(Self::Error::ConflictingProperty);
}
s.time_left = Some(*duration);
}
parser::Property::Comment(cmt) => {
if s.comments.is_some() {
return Err(Self::Error::ConflictingProperty);
}
s.comments = Some(cmt.clone());
}
parser::Property::Evaluation(evaluation) => {
if s.evaluation.is_some() {
return Err(Self::Error::ConflictingProperty);
}
s.evaluation = Some(*evaluation)
}
parser::Property::Annotation(annotation) => {
if s.annotation.is_some() {
return Err(Self::Error::ConflictingProperty);
}
s.annotation = Some(*annotation)
}
parser::Property::Territory(..) => {
eprintln!("not processing territory property");
}
parser::Property::Unknown(UnknownProperty { ident, value }) => {
s.unknown_props.push((ident.clone(), value.clone()));
}
_ => return Err(Self::Error::IncompatibleProperty(prop.clone())),
}
}
Ok(s)
}
None => Err(Self::Error::NotAMoveNode),
}?;
Ok(s)
}
}
#[derive(Clone, Debug, PartialEq, Deserialize, Serialize)]
pub struct SetupNode {
id: Uuid,
pub positions: Vec<parser::SetupInstr>,
}
impl SetupNode {
pub fn new(positions: Vec<parser::SetupInstr>) -> Result<Self, SetupNodeError> {
let mut board = HashSet::new();
for position in positions.iter() {
let point = match position {
SetupInstr::Piece((_, point)) => point,
SetupInstr::Clear(point) => point,
};
if board.contains(point) {
return Err(SetupNodeError::ConflictingPosition);
}
board.insert(point);
}
Ok(Self {
id: Uuid::new_v4(),
positions,
})
}
}
impl TryFrom<parser::Node> for SetupNode {
type Error = SetupNodeError;
fn try_from(n: parser::Node) -> Result<Self, Self::Error> {
match n.setup() {
Some(elements) => Self::new(elements),
None => Err(Self::Error::NotASetupNode),
}
}
}
/*
#[allow(dead_code)]
pub fn path_to_node(node: &GameNode, id: Uuid) -> Vec<&GameNode> {
if node.id() == id {
return vec![node];
}
for child in node.children() {
let mut path = path_to_node(child, id);
if path.len() > 1 {
path.push(child);
return path;
}
}
Vec::new()
}
*/
#[cfg(test)]
mod test {
use super::*;
use cool_asserts::assert_matches;
#[test]
fn it_can_create_an_empty_game_tree() {
let tree = GameRecord::new(
GameType::Go,
Size {
width: 19,
height: 19,
},
Player::default(),
Player::default(),
);
assert_eq!(tree.nodes().len(), 0);
}
/*
#[test]
fn it_can_add_moves_to_a_game() {
let mut game = GameRecord::new(
GameType::Go,
Size {
width: 19,
height: 19,
},
Player::default(),
Player::default(),
);
/*
let first_move = MoveNode::new(Color::Black, Move::Move("dd".to_owned()));
let first_ = game.add_child(GameNode::MoveNode(first_move.clone()));
let second_move = MoveNode::new(Color::White, Move::Move("qq".to_owned()));
first_.add_child(GameNode::MoveNode(second_move.clone()));
*/
/*
let nodes = game.nodes();
assert_eq!(nodes.len(), 2);
assert_eq!(nodes[0].id(), first_move.id);
assert_eq!(nodes[1].id(), second_move.id);
*/
}
*/
#[ignore]
#[test]
fn it_can_set_up_a_game() {
unimplemented!()
}
#[ignore]
#[test]
fn it_can_load_tree_from_sgf() {
unimplemented!()
}
#[test]
fn game_node_can_parse_sgf_move_node() {
let n = parser::Node {
properties: vec![
parser::Property::Move((Color::White, Move::Move("dp".to_owned()))),
parser::Property::TimeLeft((Color::White, Duration::from_secs(176))),
parser::Property::Comment("Comments in the game".to_owned()),
],
next: vec![],
};
assert_matches!(GameNode::try_from(n), Ok(GameNode::MoveNode(_)));
}
}
#[cfg(test)]
mod root_node_tests {
#[ignore]
#[test]
fn it_rejects_move_properties() {
unimplemented!()
}
#[ignore]
#[test]
fn it_rejects_setup_properties() {
unimplemented!()
}
#[ignore]
#[test]
fn it_can_parse_a_root_sgf() {
unimplemented!()
}
}
#[cfg(test)]
mod move_node_tests {
use crate::parser::PositionList;
use super::*;
use cool_asserts::assert_matches;
#[test]
fn it_can_parse_an_sgf_move_node() {
let n = parser::Node {
properties: vec![
parser::Property::Move((Color::White, Move::Move("dp".to_owned()))),
parser::Property::TimeLeft((Color::White, Duration::from_secs(176))),
parser::Property::Comment("Comments in the game".to_owned()),
],
next: vec![],
};
assert_matches!(MoveNode::try_from(n), Ok(node) => {
assert_eq!(node.color, Color::White);
assert_eq!(node.mv, Move::Move("dp".to_owned()));
// assert_eq!(node.children, vec![]);
assert_eq!(node.time_left, Some(Duration::from_secs(176)));
assert_eq!(node.comments, Some("Comments in the game".to_owned()));
});
}
#[test]
fn it_rejects_an_sgf_setup_node() {
let n = parser::Node {
properties: vec![
parser::Property::Move((Color::White, Move::Move("dp".to_owned()))),
parser::Property::TimeLeft((Color::White, Duration::from_secs(176))),
parser::Property::SetupBlackStones(PositionList(vec![
"dd".to_owned(),
"de".to_owned(),
])),
],
next: vec![],
};
assert_matches!(
MoveNode::try_from(n),
Err(MoveNodeError::IncompatibleProperty(_))
);
}
}
#[cfg(test)]
mod setup_node_tests {
use crate::parser::SetupInstr;
use super::*;
use cool_asserts::assert_matches;
#[ignore]
#[test]
fn it_can_parse_an_sgf_setup_node() {
unimplemented!()
}
#[test]
fn it_rejects_conflicting_placement_properties() {
assert_matches!(
SetupNode::new(vec![
SetupInstr::Piece((Color::Black, "dd".to_owned())),
SetupInstr::Piece((Color::Black, "dd".to_owned())),
]),
Err(SetupNodeError::ConflictingPosition)
);
assert_matches!(
SetupNode::new(vec![
SetupInstr::Piece((Color::Black, "dd".to_owned())),
SetupInstr::Piece((Color::Black, "ee".to_owned())),
SetupInstr::Piece((Color::White, "ee".to_owned())),
]),
Err(SetupNodeError::ConflictingPosition)
);
}
}
#[cfg(test)]
mod path_test {
use super::*;
use cool_asserts::assert_matches;
use parser::parse_collection;
use std::{fs::File, io::Read};
fn with_text(text: &str, f: impl FnOnce(Vec<GameRecord>)) {
let (_, games) = parse_collection::<nom::error::VerboseError<&str>>(text).unwrap();
let games = games
.into_iter()
.map(|game| GameRecord::try_from(game).expect("game to parse"))
.collect::<Vec<GameRecord>>();
f(games);
}
fn with_file(path: &std::path::Path, f: impl FnOnce(Vec<GameRecord>)) {
let mut file = File::open(path).unwrap();
let mut text = String::new();
let _ = file.read_to_string(&mut text);
with_text(&text, f);
}
#[test]
fn returns_the_mainline_of_a_game_without_branches() {
with_file(
std::path::Path::new("test_data/2020 USGO DDK, Round 1.sgf"),
|games| {
let game = &games[0];
let moves = game
.mainline()
.expect("there should be a mainline in this file")
.map(|nr| nr.data())
.collect::<Vec<&GameNode>>();
assert_matches!(moves[0], GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::Black);
assert_eq!(node.mv, Move::Move("pp".to_owned()));
});
assert_matches!(moves[1], GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::White);
assert_eq!(node.mv, Move::Move("dp".to_owned()));
});
assert_matches!(moves[2], GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::Black);
assert_eq!(node.mv, Move::Move("pd".to_owned()));
});
},
)
}
#[test]
fn returns_the_mainline_of_a_game_with_branches() {
with_file(std::path::Path::new("test_data/branch_test.sgf"), |games| {
let game = &games[0];
let moves = game
.mainline()
.expect("there should be a mainline in this file")
.map(|nr| nr.data())
.collect::<Vec<&GameNode>>();
assert_matches!(moves[1], GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::White);
assert_eq!(node.mv, Move::Move("dd".to_owned()));
});
assert_matches!(moves[2], GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::Black);
assert_eq!(node.mv, Move::Move("op".to_owned()));
});
assert_matches!(moves[3], GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::White);
assert_eq!(node.mv, Move::Move("dp".to_owned()));
});
});
}
#[ignore]
#[test]
fn returns_empty_list_if_no_game_nodes() {
unimplemented!()
}
#[ignore]
#[test]
fn returns_empty_list_if_node_not_found() {
unimplemented!()
}
#[ignore]
#[test]
fn path_excludes_root_node() {
unimplemented!()
}
}
#[cfg(test)]
mod file_test {
use super::*;
use crate::Win;
use cool_asserts::assert_matches;
use parser::parse_collection;
use std::{fs::File, io::Read};
fn with_text(text: &str, f: impl FnOnce(Vec<GameRecord>)) {
let (_, games) = parse_collection::<nom::error::VerboseError<&str>>(text).unwrap();
let games = games
.into_iter()
.map(|game| GameRecord::try_from(game).expect("game to parse"))
.collect::<Vec<GameRecord>>();
f(games);
}
fn with_file(path: &std::path::Path, f: impl FnOnce(Vec<GameRecord>)) {
let mut file = File::open(path).unwrap();
let mut text = String::new();
let _ = file.read_to_string(&mut text);
with_text(&text, f);
}
/// This test checks against an ordinary game from SGF. It is unannotated and should contain
/// only move nodes with no setup nodes. The original source is from a game I played on KGS.
#[test]
fn it_can_load_an_ordinary_unannotated_game() {
with_file(
std::path::Path::new("test_data/2020 USGO DDK, Round 1.sgf"),
|games| {
assert_eq!(games.len(), 1);
let game = &games[0];
assert_eq!(game.game_type, GameType::Go);
assert_eq!(
game.board_size,
Size {
width: 19,
height: 19
}
);
assert_eq!(
game.black_player,
Player {
name: Some("savanni".to_owned()),
rank: Some("23k".to_owned()),
team: None
}
);
assert_eq!(
game.white_player,
Player {
name: Some("Geckoz".to_owned()),
rank: None,
team: None
}
);
assert_eq!(game.app, Some("CGoban:3".to_owned()));
assert_eq!(game.annotator, None);
assert_eq!(game.copyright, None);
assert_eq!(
game.dates,
vec![Date::Date(
chrono::NaiveDate::from_ymd_opt(2020, 8, 5).unwrap()
)]
);
assert_eq!(game.event, None);
assert_eq!(game.game_name, None);
assert_eq!(game.extra_info, None);
assert_eq!(game.opening_info, None);
assert_eq!(
game.location,
Some("The KGS Go Server at http://www.gokgs.com/".to_owned())
);
assert_eq!(game.result, Some(GameResult::White(Win::Score(17.5))));
assert_eq!(game.round, None);
assert_eq!(game.rules, Some("AGA".to_owned()));
assert_eq!(game.source, None);
assert_eq!(game.time_limit, Some(Duration::from_secs(1800)));
assert_eq!(game.overtime, Some("5x30 byo-yomi".to_owned()));
assert_eq!(game.transcriber, None);
/*
Property {
ident: "KM".to_owned(),
values: vec!["7.50".to_owned()],
},
];
for i in 0..16 {
assert_eq!(node.properties[i], expected_properties[i]);
}
*/
/*
let children = game.children();
let node = children.first().unwrap();
assert_matches!(node, GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::Black);
assert_eq!(node.mv, Move::Move("pp".to_owned()));
assert_eq!(node.time_left, Some(Duration::from_secs(1795)));
assert_eq!(node.comments, Some("Geckoz [?]: Good game\nsavanni [23k?]: There we go! This UI is... tough.\nsavanni [23k?]: Have fun! Talk to you at the end.\nGeckoz [?]: Yeah, OGS is much better; I'm a UX professional\n".to_owned())
)});
let children = node.children();
let node = children.first().unwrap();
assert_matches!(node, GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::White);
assert_eq!(node.mv, Move::Move("dp".to_owned()));
assert_eq!(node.time_left, Some(Duration::from_secs(1765)));
assert_eq!(node.comments, None);
});
*/
/*
let node = node.next().unwrap();
let expected_properties = vec![
Property {
ident: "W".to_owned(),
values: vec!["dp".to_owned()],
},
Property {
ident: "WL".to_owned(),
values: vec!["1765.099".to_owned()],
},
];
for i in 0..2 {
assert_eq!(node.properties[i], expected_properties[i]);
}
*/
},
);
}
#[test]
fn it_can_load_a_file_with_multiple_roots() {
with_file(std::path::Path::new("test_data/multi-tree.sgf"), |games| {
assert_eq!(games.len(), 1);
let game = &games[0];
assert_eq!(game.game_type, GameType::Go);
assert_eq!(
game.board_size,
Size {
width: 19,
height: 19
}
);
assert_eq!(game.trees.len(), 2);
assert_matches!(game.trees[0].root().unwrap().data(), GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::Black);
assert_eq!(node.mv, Move::Move("pd".to_owned()));
});
assert_matches!(game.trees[1].root().unwrap().data(), GameNode::MoveNode(node) => {
assert_eq!(node.color, Color::Black);
assert_eq!(node.mv, Move::Move("pc".to_owned()));
});
});
}
#[test]
fn it_can_copy_a_game_record() {
with_file(std::path::Path::new("test_data/multi-tree.sgf"), |games| {
let dest = games.clone();
assert_eq!(games.len(), dest.len());
assert_eq!(games[0], dest[0]);
});
}
}