Compare commits

..

No commits in common. "98694f763b64e97266c9aec984d34c8f6f4ba356" and "6cae7dbb0ef3929b420a7266dc0c6739c231daa0" have entirely different histories.

3 changed files with 5 additions and 387 deletions

View File

@ -17,7 +17,7 @@ use rp_pico::{
entry, entry,
hal::{ hal::{
clocks::init_clocks_and_plls, clocks::init_clocks_and_plls,
gpio::{FunctionSio, Pin, PinId, PullDown, PullUp, SioInput, SioOutput}, gpio::{FunctionSio, Pin, PinId, PullUp, SioInput},
pac::{CorePeripherals, Peripherals}, pac::{CorePeripherals, Peripherals},
spi::{Enabled, Spi, SpiDevice, ValidSpiPinout}, spi::{Enabled, Spi, SpiDevice, ValidSpiPinout},
watchdog::Watchdog, watchdog::Watchdog,
@ -65,16 +65,12 @@ struct BikeUI<
RightId: PinId, RightId: PinId,
PreviousId: PinId, PreviousId: PinId,
NextId: PinId, NextId: PinId,
BrakeId: PinId,
> { > {
spi: RefCell<Spi<Enabled, D, P, 8>>, spi: RefCell<Spi<Enabled, D, P, 8>>,
left_blinker_button: DebouncedButton<LeftId>, left_blinker_button: DebouncedButton<LeftId>,
right_blinker_button: DebouncedButton<RightId>, right_blinker_button: DebouncedButton<RightId>,
previous_animation_button: DebouncedButton<PreviousId>, previous_animation_button: DebouncedButton<PreviousId>,
next_animation_button: DebouncedButton<NextId>, next_animation_button: DebouncedButton<NextId>,
brake_sensor: Pin<BrakeId, FunctionSio<SioInput>, PullUp>,
brake_enabled: bool,
} }
impl< impl<
@ -84,8 +80,7 @@ impl<
RightId: PinId, RightId: PinId,
PreviousId: PinId, PreviousId: PinId,
NextId: PinId, NextId: PinId,
BrakeId: PinId, > BikeUI<D, P, LeftId, RightId, PreviousId, NextId>
> BikeUI<D, P, LeftId, RightId, PreviousId, NextId, BrakeId>
{ {
fn new( fn new(
spi: Spi<Enabled, D, P, 8>, spi: Spi<Enabled, D, P, 8>,
@ -93,7 +88,6 @@ impl<
right_blinker_button: Pin<RightId, FunctionSio<SioInput>, PullUp>, right_blinker_button: Pin<RightId, FunctionSio<SioInput>, PullUp>,
previous_animation_button: Pin<PreviousId, FunctionSio<SioInput>, PullUp>, previous_animation_button: Pin<PreviousId, FunctionSio<SioInput>, PullUp>,
next_animation_button: Pin<NextId, FunctionSio<SioInput>, PullUp>, next_animation_button: Pin<NextId, FunctionSio<SioInput>, PullUp>,
brake_sensor: Pin<BrakeId, FunctionSio<SioInput>, PullUp>,
) -> Self { ) -> Self {
Self { Self {
spi: RefCell::new(spi), spi: RefCell::new(spi),
@ -101,9 +95,6 @@ impl<
right_blinker_button: DebouncedButton::new(right_blinker_button), right_blinker_button: DebouncedButton::new(right_blinker_button),
previous_animation_button: DebouncedButton::new(previous_animation_button), previous_animation_button: DebouncedButton::new(previous_animation_button),
next_animation_button: DebouncedButton::new(next_animation_button), next_animation_button: DebouncedButton::new(next_animation_button),
brake_sensor,
brake_enabled: false,
} }
} }
} }
@ -115,17 +106,10 @@ impl<
RightId: PinId, RightId: PinId,
PreviousId: PinId, PreviousId: PinId,
NextId: PinId, NextId: PinId,
BrakeId: PinId, > UI for BikeUI<D, P, LeftId, RightId, PreviousId, NextId>
> UI for BikeUI<D, P, LeftId, RightId, PreviousId, NextId, BrakeId>
{ {
fn check_event(&mut self, current_time: Instant) -> Option<Event> { fn check_event(&mut self, current_time: Instant) -> Option<Event> {
if self.brake_sensor.is_high().unwrap_or(true) && !self.brake_enabled { if self.left_blinker_button.is_low(current_time) {
self.brake_enabled = true;
Some(Event::Brake)
} else if self.brake_sensor.is_low().unwrap_or(false) && self.brake_enabled {
self.brake_enabled = false;
Some(Event::BrakeRelease)
} else if self.left_blinker_button.is_low(current_time) {
self.left_blinker_button.set_debounce(current_time); self.left_blinker_button.set_debounce(current_time);
Some(Event::LeftBlinker) Some(Event::LeftBlinker)
} else if self.right_blinker_button.is_low(current_time) { } else if self.right_blinker_button.is_low(current_time) {
@ -213,9 +197,6 @@ fn main() -> ! {
let right_blinker_button = pins.gpio16.into_pull_up_input(); let right_blinker_button = pins.gpio16.into_pull_up_input();
let previous_animation_button = pins.gpio27.into_pull_up_input(); let previous_animation_button = pins.gpio27.into_pull_up_input();
let next_animation_button = pins.gpio26.into_pull_up_input(); let next_animation_button = pins.gpio26.into_pull_up_input();
let brake_sensor = pins.gpio18.into_pull_up_input();
let mut led_pin = pins.led.into_push_pull_output();
let ui = BikeUI::new( let ui = BikeUI::new(
spi, spi,
@ -223,11 +204,11 @@ fn main() -> ! {
right_blinker_button, right_blinker_button,
previous_animation_button, previous_animation_button,
next_animation_button, next_animation_button,
brake_sensor,
); );
let mut app = App::new(Box::new(ui)); let mut app = App::new(Box::new(ui));
let mut led_pin = pins.led.into_push_pull_output();
led_pin.set_high(); led_pin.set_high();
let mut time = Instant::default(); let mut time = Instant::default();

View File

@ -1,189 +0,0 @@
$fn = 50;
threshold = 0.1;
half_threshold = threshold / 2;
bevel = 0.5;
wire_radius = 1;
wall_thickness = 2;
cutout_threshold = 1;
battery_length = 71;
battery_width = 18.75;
cell_holder_length = battery_length + wall_thickness * 2;
cell_holder_width = battery_width + wall_thickness * 2;
cell_holder_height = battery_width + wall_thickness;
battery_contact_thickness = .6;
// battery_contact_thickness = 1;
battery_contact_width = 11;
battery_contact_length = 12.8;
battery_contact_spring_height = 10.5;
battery_contact_flange_height = 1.9;
converter_width = 11.25;
converter_length = 22.25;
converter_height = 5;
module pill(length, bevel) {
hull() {
translate([0, 0, (-length / 2) + bevel]) sphere(r = bevel);
translate([0, 0, (length / 2) - bevel]) sphere(r = bevel);
}
}
module box_face(length, width, wall_thickness, bevel) {
center_width = width - bevel * 2;
center_length = length - bevel * 2;
hull() {
translate([-center_width / 2, -center_length / 2, 0])
pill(wall_thickness, bevel);
translate([center_width / 2, -center_length / 2, 0])
pill(wall_thickness, bevel);
translate([center_width / 2, center_length / 2, 0])
pill(wall_thickness, bevel);
translate([-center_width / 2, center_length / 2, 0])
pill(wall_thickness, bevel);
}
}
module channel(length, width, height) {
union() {
translate([0, 0, -height / 2 + wall_thickness / 2])
box_face(length, width, wall_thickness, bevel);
translate([-width / 2 + wall_thickness / 2, 0, 0]) rotate([0, 90, 0])
box_face(length, height, wall_thickness, bevel);
translate([width / 2 - wall_thickness / 2, 0, 0]) rotate([0, 90, 0])
box_face(length, height, wall_thickness, bevel);
}
}
module box(length, width, height) {
union() {
channel(length, width, height);
translate([0, -length / 2 + wall_thickness / 2, 0]) rotate([90, 0, 0])
box_face(height, width, wall_thickness, bevel);
translate([0, length / 2 - wall_thickness / 2, 0]) rotate([90, 0, 0])
box_face(height, width, wall_thickness, bevel);
}
}
// box(20, 10, 10);
// color("blue", 0.5) cube([10, 20, 10], center = true);
module cell_cradle(width, height) {
difference() {
translate([0, 0, -height / 2]) cube([width,
wall_thickness,
height],
center = true);
color("red", 1) translate([0, 0, 0])
rotate([90, 0, 0])
cylinder(h = wall_thickness + cutout_threshold,
r = width / 2,
center = true);
}
}
module cell_box() {
union() {
channel(cell_holder_length, cell_holder_width, cell_holder_height);
translate([0, -battery_length / 6, wall_thickness]) cell_cradle(cell_holder_width, cell_holder_height / 2);
translate([0, battery_length / 6, wall_thickness]) cell_cradle(cell_holder_width, cell_holder_height / 2);
}
}
module contact_box() {
contact_thickness = battery_contact_flange_height * .75;
cutout_width = battery_contact_width * .8;
// box_thickness = contact_thickness_ + wall_thickness * 2;
// box_height = width + wall_thickness;
difference() {
box(wall_thickness * 2 + contact_thickness, cell_holder_width, cell_holder_height);
translate([0, contact_thickness, wall_thickness * 2])
cube([battery_contact_width,
wall_thickness * 2,
battery_contact_length + threshold],
center = true);
color("red", 1) translate([0,
-(wall_thickness + contact_thickness + threshold) / 2,
cell_holder_height / 2])
cube([5, wall_thickness + threshold * 2, cell_holder_height], center = true);
translate([0,
-(wall_thickness + contact_thickness + threshold) / 2 - wire_radius,
0])
rotate([0, 90, 0])
cylinder(h = cell_holder_width, r = wire_radius, center = true);
}
}
module battery_slot() {
difference() {
union() {
translate([0, -cell_holder_length / 2, 0]) contact_box();
translate([0, wall_thickness, 0]) cell_box();
translate([0, cell_holder_length / 2 + wall_thickness * 2, 0])
rotate([0, 0, 180])
contact_box();
}
translate([cell_holder_width / 2, 1, 0]) rotate([90, 0, 0]) cylinder(h = cell_holder_length + wall_thickness * 4 + battery_contact_flange_height * 2, r = wire_radius, center = true);
translate([-cell_holder_width / 2, 1, 0]) rotate([90, 0, 0]) cylinder(h = cell_holder_length + wall_thickness * 4 + battery_contact_flange_height * 2, r = wire_radius, center = true);
}
}
module converter_box() {
box_width = wall_thickness * 2 + converter_height;
difference() {
box(box_width, cell_holder_width * 2 - wall_thickness, cell_holder_height);
translate([cell_holder_width - wire_radius, 0, 0])
rotate([90, 0, 0])
cylinder(h = box_width, r = wire_radius, center = true);
translate([cell_holder_width - wire_radius * 2, 0, 0])
rotate([0, 90, 0])
cylinder(h = wall_thickness + threshold, r = wire_radius, center = true);
translate([-cell_holder_width + wire_radius, 0, 0])
rotate([90, 0, 0])
cylinder(h = box_width, r = wire_radius, center = true);
translate([-cell_holder_width + wire_radius * 2, 0, 0])
rotate([0, 90, 0])
cylinder(h = wall_thickness + threshold, r = wire_radius, center = true);
translate([0, -box_width / 2, 0])
rotate([0, 90, 0])
cylinder(h = cell_holder_width * 2 + wall_thickness, r = wire_radius, center = true);
translate([-cell_holder_width * .75, (-box_width + wall_thickness) / 2, 0])
rotate([90, 0, 0])
cylinder(h = wall_thickness * 2, r = wire_radius, center = true);
translate([cell_holder_width * .75, (-box_width + wall_thickness) / 2, 0])
rotate([90, 0, 0])
cylinder(h = wall_thickness * 2, r = wire_radius, center = true);
}
}
module battery_case() {
union() {
translate([-cell_holder_width / 2, 0, 0]) battery_slot();
translate([cell_holder_width / 2 - wall_thickness, 0, 0]) battery_slot();
color("blue", 1)
translate([-wall_thickness / 2,
cell_holder_length / 2 + wall_thickness * 2 + battery_contact_flange_height + wall_thickness * 2 + wall_thickness / 2,
0])
converter_box();
}
}
battery_case();

View File

@ -1,174 +0,0 @@
width = 65;
length = 75;
height = 16;
wall_thickness = 2;
guide_thickness = 1;
power_width = 21;
output_width = 37.5;
half_wall_thickness = wall_thickness / 2;
standoff_thickness = 10;
hole_diameter = 3;
// The radius of a nut in mm. However, based on my measurements, I'm not actually sure I have this right. The short height of a nut is 7.86mm. Derive from there.
nut_radius = 8.5 * cos(30) / 2;
nut_height = 2.69; // mm
screw_radius = 2;
handlebar_radius = 15;
clasp_thickness = 4;
clasp_width = 35;
circular_face_count = 96;
module hexagon(r, h) {
pi = 3.1415926;
polyhedron(
points=[
[r, 0, 0],
[r * cos(60), r * sin(60), 0],
[r * cos(120), r * sin(120), 0],
[r * cos(180), r * sin(180), 0],
[r * cos(240), r * sin(240), 0],
[r * cos(300), r * sin(300), 0],
[r, 0, h],
[r * cos(60), r * sin(60), h],
[r * cos(120), r * sin(120), h],
[r * cos(180), r * sin(180), h],
[r * cos(240), r * sin(240), h],
[r * cos(300), r * sin(300), h],
],
faces=[
[0, 1, 2, 3, 4, 5],
[11, 10, 9, 8, 7, 6],
[6, 7, 1, 0],
[7, 8, 2, 1],
[8, 9, 3, 2],
[9, 10, 4, 3],
[10, 11, 5, 4],
[11, 6, 0, 5],
]
);
}
// Nut holders are blocks that have a hole drilled through them and a hexagonal-shaped cavity. The idea is to
module nut_holder() {
difference() {
translate([-4.5, -4.5, -2]) cube([9, 9, 4]);
union() {
translate([0, 0, -1]) hexagon(nut_radius, 2);
cylinder(h = 6, r = screw_radius, center = true, $fn = 24);
}
}
}
module screw_hole() {
union() {
translate([0, 0, 4]) cylinder(h = 2.1, r = screw_radius * 2, center = true, $fn = 24);
cylinder(h = 6, r = screw_radius, center = true, $fn = 24);
}
}
module base() {
cube([width, length, wall_thickness]);
}
module face() {
union() {
cube([width, length, wall_thickness / 2]);
translate([wall_thickness, wall_thickness, wall_thickness / 2]) cube([width-wall_thickness*2, length-wall_thickness*2, wall_thickness / 2]);
translate([4.5 + wall_thickness, 4.5 + wall_thickness, 4]) nut_holder();
translate([width - 4.5 - wall_thickness, 4.5 + wall_thickness, 4]) nut_holder();
translate([width - 4.5 - wall_thickness, length - 4.5 - wall_thickness, 4]) nut_holder();
translate([4.5 + wall_thickness, length - 4.5 - wall_thickness, 4]) nut_holder();
}
}
module wall(length) {
cube([length, height, wall_thickness]);
}
module power_wall() {
difference() {
wall(65);
translate([9, 2, -.5]) cube([power_width, height, wall_thickness + 1]);
}
}
module output_wall() {
difference() {
wall(65);
translate([9, 2, -.5]) cube([output_width, height, wall_thickness + 1]);
}
}
// Use hexagons as cutouts into which I can install a hex nut. This isn't quite right yet, but close.
// hexagon(nut_radius, 1);
// cube([standoff_thickness, standoff_thickness, 2]);
/*
difference() {
union() {
base();
rotate([90, 0, 90]) wall(75);
// translate([width - wall_thickness, 0, 0]) rotate([90, 0, 90]) wall(length);
// rotate([90, 0, 0]) power_wall();
// translate([0, length, 0]) rotate([90, 0, 0]) output_wall();
// translate([wall_thickness,
// wall_thickness,
// wall_thickness]) standoff();
// translate([width - wall_thickness - standoff_thickness,
// wall_thickness,
// wall_thickness]) standoff();
// translate([wall_thickness,
// length - wall_thickness - standoff_thickness,
// wall_thickness]) standoff();
// translate([width - wall_thickness - standoff_thickness,
// length - wall_thickness - standoff_thickness,
// wall_thickness]) standoff();
}
// translate([-half_wall_thickness, -wall_thickness - half_wall_thickness, height - half_wall_thickness]) cube([wall_thickness, length + wall_thickness * 2, wall_thickness]);
// translate([width - half_wall_thickness, -wall_thickness - half_wall_thickness, height - half_wall_thickness]) cube([wall_thickness, length + wall_thickness * 2, wall_thickness]);
// translate([-half_wall_thickness, -half_wall_thickness, height - half_wall_thickness]) rotate([0, 0, 270]) cube([wall_thickness, width + wall_thickness * 2, wall_thickness]);
// translate([-half_wall_thickness, length + half_wall_thickness, height - half_wall_thickness]) rotate([0, 0, 270]) cube([wall_thickness, width + wall_thickness * 2, wall_thickness]);
}
*/
module box() {
difference() {
union() {
cube([width, length, wall_thickness * 2]);
translate([0, 0, wall_thickness]) rotate([90, 0, 90]) wall(length);
translate([width - wall_thickness, 0, wall_thickness]) rotate([90, 0, 90]) wall(length);
translate([0, wall_thickness, wall_thickness]) rotate([90, 0, 0]) wall(width);
translate([0, length, wall_thickness]) rotate([90, 0, 0]) wall(width);
}
translate([4.5 + wall_thickness, 4.5 + wall_thickness, 4]) rotate([180, 0, 0]) screw_hole();
translate([width - 4.5 - wall_thickness, 4.5 + wall_thickness, 4]) rotate([180, 0, 0]) screw_hole();
translate([width - 4.5 - wall_thickness, length - 4.5 - wall_thickness, 4]) rotate([180, 0, 0]) screw_hole();
translate([4.5 + wall_thickness, length - 4.5 - wall_thickness, 4]) rotate([180, 0, 0]) screw_hole();
}
}
module top_clasp() {
difference() {
union() {
cylinder(h = clasp_width, r = handlebar_radius + clasp_thickness, center = true, $fn = circular_face_count);
translate([0, 0, -clasp_width / 2]) cylinder(h = 1, r = handlebar_radius + clasp_thickness + 1.5, center = true, $fn = circular_face_count);
translate([0, 0, -clasp_width / 2 + 4]) cylinder(h = 1, r = handlebar_radius + clasp_thickness + 1.5, center = true, $fn = circular_face_count);
translate([0, 0, clasp_width / 2]) cylinder(h = 1, r = handlebar_radius + clasp_thickness + 1.5, center = true, $fn = circular_face_count);
translate([0, 0, clasp_width / 2 - 4]) cylinder(h = 1, r = handlebar_radius + clasp_thickness + 1.5, center = true, $fn = circular_face_count);
translate([-handlebar_radius-5, -10, -clasp_width / 2 + 6]) cube([6, 20, clasp_width - 12]);
}
translate([-0.5, 0, 0]) cylinder(h = clasp_width+2, r = handlebar_radius + 1, center = true, $fn = circular_face_count);
translate([-0.5, -handlebar_radius - 10, -clasp_width / 2 - 1]) cube([handlebar_radius + 10, handlebar_radius * 2 + 20, clasp_width + 2]);
}
}
module body() {
union() {
box();
// translate([width / 2, length / 2, -5 - handlebar_radius]) rotate([0, 90, 90]) top_clasp();
}
}
body();
// translate([width + 10, 0, 0]) face();