Set up a tree container that allows for some certain traversals #79

Merged
savanni merged 6 commits from tree-traversals into main 2023-10-25 03:13:39 +00:00
5 changed files with 206 additions and 0 deletions

4
Cargo.lock generated
View File

@ -4060,6 +4060,10 @@ version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "efd1f82c56340fdf16f2a953d7bda4f8fdffba13d93b00844c25572110b26079"
[[package]]
name = "tree"
version = "0.1.0"
[[package]]
name = "try-lock"
version = "0.2.4"

View File

@ -20,4 +20,5 @@ members = [
"result-extended",
"screenplay",
"sgf",
"tree",
]

View File

@ -23,6 +23,7 @@ RUST_ALL_TARGETS=(
"result-extended"
"screenplay"
"sgf"
"tree"
)
build_rust_targets() {

8
tree/Cargo.toml Normal file
View File

@ -0,0 +1,8 @@
[package]
name = "tree"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]

192
tree/src/lib.rs Normal file
View File

@ -0,0 +1,192 @@
//! This data structure is a generic tree which can contain any data. That data itself need to keep
//! track of its own tree structure.
//!
//! This surely already exists. I am created it to test my own ability to do things in Rust.
use std::{
cell::{Ref, RefCell},
collections::VecDeque,
rc::Rc,
};
#[derive(Clone, Debug)]
pub enum Tree<T> {
Empty,
Root(Node<T>),
}
impl<T> Default for Tree<T> {
fn default() -> Self {
Tree::Empty
}
}
impl<T> Tree<T> {
pub fn new(value: T) -> (Tree<T>, Node<T>) {
let node = Node::new(value);
let tree = Tree::Root(node.clone());
(tree, node)
}
pub fn set_value(&mut self, value: T) -> Node<T> {
let node = Node::new(value);
*self = Tree::Root(node.clone());
node
}
/// Use a breadth-first-search pattern to find a node, returning the node if found.
pub fn find_bfs<F>(&self, op: F) -> Option<Node<T>>
where
F: FnOnce(&T) -> bool + Copy,
{
let mut queue: VecDeque<Node<T>> = match self {
Tree::Empty => VecDeque::new(),
Tree::Root(node) => {
let mut queue = VecDeque::new();
queue.push_back(node.clone());
queue
}
};
while let Some(node) = queue.pop_front() {
if op(&node.value()) {
return Some(node.clone());
}
for child in node.children().iter() {
queue.push_back(child.clone())
}
}
None
}
/// Convert each node of a tree from type T to type U
pub fn map<F, U>(&self, op: F) -> Tree<U>
where
F: FnOnce(&T) -> U + Copy,
{
// A key part of this is to avoid recursion. There is no telling how deep a tree may go (Go
// game records can go hundreds of nodes deep), so we're going to just avoid recursion.
match self {
Tree::Empty => Tree::Empty,
Tree::Root(root) => {
let new_root = Node::new(op(&root.value()));
// This queue serves as a work list. Each node in the queue needs to be converted,
// and I've paired the node up with the one that it's supposed to be attached to.
// So, as we look at a node A, we make sure that all of its children gets added to
// the queue, and that the queue knows that the conversion of each child node
// should get attached to A.
let mut queue: VecDeque<(Node<T>, Node<U>)> = root
.children()
.iter()
.map(|child| (child.clone(), new_root.clone()))
.collect();
while let Some((source, dest)) = queue.pop_front() {
let res = Node::new(op(&source.value()));
dest.add_child_node(res.clone());
for child in source.children().iter() {
queue.push_back((child.clone(), res.clone()));
}
}
Tree::Root(new_root)
}
}
}
}
// By using the Rc<RefCell> container here, I'm able to make Node easily clonable while still
// having the contents be shared. This means that I can change the tree structure without having to
// make the visible objects mutable.
//
// This feels like cheating the type system.
//
// However, since I've moved the RefCell inside of the node, I can borrow the node multiple times
// in a traversal function and I can make changes to nodes that I find.
#[derive(Debug)]
pub struct Node<T>(Rc<RefCell<Node_<T>>>);
impl<T> Clone for Node<T> {
fn clone(&self) -> Self {
Node(Rc::clone(&self.0))
}
}
#[derive(Debug)]
struct Node_<T> {
value: T,
children: Vec<Node<T>>,
}
impl<T> Node<T> {
pub fn new(value: T) -> Self {
Self(Rc::new(RefCell::new(Node_ {
value,
children: vec![],
})))
}
/// Immutably retrieve the data in this node.
pub fn value<'a>(&self) -> Ref<T> {
// Ref::map is not actually a member function. I don't know why this was done, other than
// maybe to avoid conflicting with other `map` declarations. Why that is necessary when
// Option::map exists as a member, I don't know.
Ref::map(self.0.borrow(), |v| &v.value)
}
pub fn children<'a>(&self) -> Ref<Vec<Node<T>>> {
Ref::map(self.0.borrow(), |v| &v.children)
}
pub fn add_child_node(&self, child: Node<T>) {
self.0.borrow_mut().children.push(child)
}
pub fn add_child_value(&self, value: T) -> Node<T> {
let node = Node::new(value);
self.0.borrow_mut().children.push(node.clone());
node
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn can_find_node_in_tree() {
let mut tree = Tree::default();
tree.set_value(15);
assert!(tree.find_bfs(|val| *val == 15).is_some());
assert!(tree.find_bfs(|val| *val == 16).is_none());
let node = tree.find_bfs(|val| *val == 15).unwrap();
node.add_child_value(20);
assert!(tree.find_bfs(|val| *val == 20).is_some());
}
#[test]
fn node_can_add_children() {
let n = Node::new(15);
n.add_child_value(20);
assert_eq!(*n.value(), 15);
// assert_eq!(n.children(), vec![Rc::new(RefCell::new(Node::new(20)))]);
}
#[test]
fn it_can_map_one_tree_to_another() {
let (tree, n) = Tree::new(15);
let n = n.add_child_value(16);
let _ = n.add_child_value(17);
let tree2 = tree.map(|v| v.to_string());
assert!(tree2.find_bfs(|val| *val == "15").is_some());
assert!(tree2.find_bfs(|val| *val == "16").is_some());
assert!(tree2.find_bfs(|val| *val == "17").is_some());
}
}