Set up a tree container that allows for some certain traversals #79
|
@ -4060,6 +4060,10 @@ version = "0.1.0"
|
|||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "efd1f82c56340fdf16f2a953d7bda4f8fdffba13d93b00844c25572110b26079"
|
||||
|
||||
[[package]]
|
||||
name = "tree"
|
||||
version = "0.1.0"
|
||||
|
||||
[[package]]
|
||||
name = "try-lock"
|
||||
version = "0.2.4"
|
||||
|
|
|
@ -20,4 +20,5 @@ members = [
|
|||
"result-extended",
|
||||
"screenplay",
|
||||
"sgf",
|
||||
"tree",
|
||||
]
|
||||
|
|
1
build.sh
1
build.sh
|
@ -23,6 +23,7 @@ RUST_ALL_TARGETS=(
|
|||
"result-extended"
|
||||
"screenplay"
|
||||
"sgf"
|
||||
"tree"
|
||||
)
|
||||
|
||||
build_rust_targets() {
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
[package]
|
||||
name = "tree"
|
||||
version = "0.1.0"
|
||||
edition = "2021"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
||||
[dependencies]
|
|
@ -0,0 +1,192 @@
|
|||
//! This data structure is a generic tree which can contain any data. That data itself need to keep
|
||||
//! track of its own tree structure.
|
||||
//!
|
||||
//! This surely already exists. I am created it to test my own ability to do things in Rust.
|
||||
|
||||
use std::{
|
||||
cell::{Ref, RefCell},
|
||||
collections::VecDeque,
|
||||
rc::Rc,
|
||||
};
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub enum Tree<T> {
|
||||
Empty,
|
||||
Root(Node<T>),
|
||||
}
|
||||
|
||||
impl<T> Default for Tree<T> {
|
||||
fn default() -> Self {
|
||||
Tree::Empty
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Tree<T> {
|
||||
pub fn new(value: T) -> (Tree<T>, Node<T>) {
|
||||
let node = Node::new(value);
|
||||
let tree = Tree::Root(node.clone());
|
||||
(tree, node)
|
||||
}
|
||||
|
||||
pub fn set_value(&mut self, value: T) -> Node<T> {
|
||||
let node = Node::new(value);
|
||||
*self = Tree::Root(node.clone());
|
||||
node
|
||||
}
|
||||
|
||||
/// Use a breadth-first-search pattern to find a node, returning the node if found.
|
||||
pub fn find_bfs<F>(&self, op: F) -> Option<Node<T>>
|
||||
where
|
||||
F: FnOnce(&T) -> bool + Copy,
|
||||
{
|
||||
let mut queue: VecDeque<Node<T>> = match self {
|
||||
Tree::Empty => VecDeque::new(),
|
||||
Tree::Root(node) => {
|
||||
let mut queue = VecDeque::new();
|
||||
queue.push_back(node.clone());
|
||||
queue
|
||||
}
|
||||
};
|
||||
|
||||
while let Some(node) = queue.pop_front() {
|
||||
if op(&node.value()) {
|
||||
return Some(node.clone());
|
||||
}
|
||||
|
||||
for child in node.children().iter() {
|
||||
queue.push_back(child.clone())
|
||||
}
|
||||
}
|
||||
None
|
||||
}
|
||||
|
||||
/// Convert each node of a tree from type T to type U
|
||||
pub fn map<F, U>(&self, op: F) -> Tree<U>
|
||||
where
|
||||
F: FnOnce(&T) -> U + Copy,
|
||||
{
|
||||
// A key part of this is to avoid recursion. There is no telling how deep a tree may go (Go
|
||||
// game records can go hundreds of nodes deep), so we're going to just avoid recursion.
|
||||
match self {
|
||||
Tree::Empty => Tree::Empty,
|
||||
Tree::Root(root) => {
|
||||
let new_root = Node::new(op(&root.value()));
|
||||
|
||||
// This queue serves as a work list. Each node in the queue needs to be converted,
|
||||
// and I've paired the node up with the one that it's supposed to be attached to.
|
||||
// So, as we look at a node A, we make sure that all of its children gets added to
|
||||
// the queue, and that the queue knows that the conversion of each child node
|
||||
// should get attached to A.
|
||||
let mut queue: VecDeque<(Node<T>, Node<U>)> = root
|
||||
.children()
|
||||
.iter()
|
||||
.map(|child| (child.clone(), new_root.clone()))
|
||||
.collect();
|
||||
|
||||
while let Some((source, dest)) = queue.pop_front() {
|
||||
let res = Node::new(op(&source.value()));
|
||||
dest.add_child_node(res.clone());
|
||||
|
||||
for child in source.children().iter() {
|
||||
queue.push_back((child.clone(), res.clone()));
|
||||
}
|
||||
}
|
||||
Tree::Root(new_root)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// By using the Rc<RefCell> container here, I'm able to make Node easily clonable while still
|
||||
// having the contents be shared. This means that I can change the tree structure without having to
|
||||
// make the visible objects mutable.
|
||||
//
|
||||
// This feels like cheating the type system.
|
||||
//
|
||||
// However, since I've moved the RefCell inside of the node, I can borrow the node multiple times
|
||||
// in a traversal function and I can make changes to nodes that I find.
|
||||
#[derive(Debug)]
|
||||
pub struct Node<T>(Rc<RefCell<Node_<T>>>);
|
||||
|
||||
impl<T> Clone for Node<T> {
|
||||
fn clone(&self) -> Self {
|
||||
Node(Rc::clone(&self.0))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Node_<T> {
|
||||
value: T,
|
||||
children: Vec<Node<T>>,
|
||||
}
|
||||
|
||||
impl<T> Node<T> {
|
||||
pub fn new(value: T) -> Self {
|
||||
Self(Rc::new(RefCell::new(Node_ {
|
||||
value,
|
||||
children: vec![],
|
||||
})))
|
||||
}
|
||||
|
||||
/// Immutably retrieve the data in this node.
|
||||
pub fn value<'a>(&self) -> Ref<T> {
|
||||
// Ref::map is not actually a member function. I don't know why this was done, other than
|
||||
// maybe to avoid conflicting with other `map` declarations. Why that is necessary when
|
||||
// Option::map exists as a member, I don't know.
|
||||
Ref::map(self.0.borrow(), |v| &v.value)
|
||||
}
|
||||
|
||||
pub fn children<'a>(&self) -> Ref<Vec<Node<T>>> {
|
||||
Ref::map(self.0.borrow(), |v| &v.children)
|
||||
}
|
||||
|
||||
pub fn add_child_node(&self, child: Node<T>) {
|
||||
self.0.borrow_mut().children.push(child)
|
||||
}
|
||||
|
||||
pub fn add_child_value(&self, value: T) -> Node<T> {
|
||||
let node = Node::new(value);
|
||||
self.0.borrow_mut().children.push(node.clone());
|
||||
node
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn can_find_node_in_tree() {
|
||||
let mut tree = Tree::default();
|
||||
tree.set_value(15);
|
||||
assert!(tree.find_bfs(|val| *val == 15).is_some());
|
||||
assert!(tree.find_bfs(|val| *val == 16).is_none());
|
||||
|
||||
let node = tree.find_bfs(|val| *val == 15).unwrap();
|
||||
node.add_child_value(20);
|
||||
|
||||
assert!(tree.find_bfs(|val| *val == 20).is_some());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn node_can_add_children() {
|
||||
let n = Node::new(15);
|
||||
n.add_child_value(20);
|
||||
|
||||
assert_eq!(*n.value(), 15);
|
||||
// assert_eq!(n.children(), vec![Rc::new(RefCell::new(Node::new(20)))]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn it_can_map_one_tree_to_another() {
|
||||
let (tree, n) = Tree::new(15);
|
||||
let n = n.add_child_value(16);
|
||||
let _ = n.add_child_value(17);
|
||||
|
||||
let tree2 = tree.map(|v| v.to_string());
|
||||
|
||||
assert!(tree2.find_bfs(|val| *val == "15").is_some());
|
||||
assert!(tree2.find_bfs(|val| *val == "16").is_some());
|
||||
assert!(tree2.find_bfs(|val| *val == "17").is_some());
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue